On a nonlinear partial differential equation having natural growth terms and unbounded solution. (English) Zbl 0696.35042

Summary: We prove the existence of a solution of the nonlinear elliptic equation: \(A(u)+g(x,u,Du)=h(x)\), where A is a Leray-Lions operator from \(W_ 0^{1,p}(\Omega)\) into \(W^{-1,p'}(\Omega)\) and g is a nonlinear term with “natural” growth with respect to Du [i.e. such that \(| g(x,u,\xi)| \leq b(| u|)(| \xi |^ p+c(x))]\), satisfying the sign condition g(x,u,\(\xi)\)u\(\geq 0\) but no growth condition with respect to u. Here h belongs to \(W^{-1,p'}(\Omega)\), thus the solution u of the problem does not in general be more smooth than \(W_ 0^{1,p}(\Omega)\). The existence of a solution is also proved for the corresponding obstacle problem.


35J20 Variational methods for second-order elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
47J05 Equations involving nonlinear operators (general)
49J40 Variational inequalities
Full Text: DOI Numdam EuDML


[1] Amann, H.; Crandall, M. G., On Some Existence Theorems for Semi Linear Elliptic Equations, Indiana Univ. Math. J., Vol. 27, 779-790 (1978) · Zbl 0391.35030
[2] Bensoussan, A.; Frehse, J., Nonlinear Elliptic Systems in Stochastic Game Theory, J. Reine Ang. Math., Vol. 350, 23-67 (1984) · Zbl 0531.93052
[3] Bensoussan, A.; Frehse, J.; Mosco, U., A Stochastic Impulse Control Problem with Quadratic Growth Hamiltonian and the Corresponding Quasi Variational Inequality, J. Reine Ang. Math., Vol. 331, 124-145 (1982) · Zbl 0474.49013
[4] Boccardo, L.; Giachetti, D., Strongly Non Linear Unilateral Problems, Appl. Mat. Opt., Vol. 9, 291-301 (1983) · Zbl 0535.49010
[5] Boccardo, L.; Giachetti, D., Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni, Ricerche di Matematica, Vol. 34, 309-323 (1985)
[7] Boccardo, L.; Murat, F.; Puel, J. P., Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugaliae Math., Vol. 41, 507-534 (1982) · Zbl 0524.35041
[8] Boccardo, L.; Murat, F.; Puel, J. P., Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, (Lions, J. L.; Brezis, H., Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. IV (1983), Pitman: Pitman London), 19-73, Research Notes in Mathematics, No. 84 · Zbl 0588.35041
[9] Boccardo, L.; Murat, F.; Puel, J. P., Résultats d’existence pour certains problèmes elliptiques quasi-linéaires, Ann. Sc. Norm. Sup. Pisa, Vol. 11, 213-235 (1984) · Zbl 0557.35051
[11] Brezis, H.; Browder, F. E., Some Properties of Higher Order Sobolev Spaces, J. Math. Pures Appl., Vol. 61, 245-259 (1982) · Zbl 0512.46034
[12] Browder, F. E., Existence Theorems for Non Linear Partial Differential Equations, (Chern, S. S.; Smale, S., Proceedings of Symposia in Pure Mathematics, Vol. 16 (1970), A.M.S.: A.M.S. Providence), 1-60 · Zbl 0212.27704
[13] Del Vecchio, T., Strongly Non Linear Problems with Gradient Dependent Lower Order Non Linearity, Nonlinear Anal. T.M.A., Vol. 11, 5-15 (1987) · Zbl 0631.35031
[15] Hess, P., Variational Inequalities for Strongy Non Linear Elliptic Operators, J. Math. Pures Appl., Vol. 52, 285-298 (1973) · Zbl 0259.47050
[17] Leray, J.; Lions, J. L., Quelques résultats de Visik sur les problèmes elliptiques non linéaires par la méthode de Minty-Browder, Bull. Soc. Math. France, Vol. 93, 97-107 (1965) · Zbl 0132.10502
[18] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[19] Rakotoson, J. M.; Temam, R., Relative Rearrangement in Quasilinear Variational Inequalities, Indiana Univ. Math. J., 36, 757-810 (1987)
[20] Webb, J. R.L., Boundary Value Problems for Strongly Non Linear Elliptic Equations, J. London Math. Soc., Vol. 21, 123-132 (1980) · Zbl 0438.35029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.