On some nonconvex variational problems related to hemivariational inequalities. (English) Zbl 0696.49018

The author gives an estimate result for a hemivariational inequality, i.e. a nonlinear variational inequality in which the only nonmonotone term corresponds to a generalized gradient of some function f. The paper is devoted to the case when f is the product of two positive Lipschitz convex functions.
Reviewer: F.Bonnans


49J40 Variational inequalities
49J20 Existence theories for optimal control problems involving partial differential equations
35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
Full Text: DOI


[1] Panagiotopoulos, P. D., Non-convex superpotentials in the sense of F.H. Clarke and applications, Mech. Res. Communs, 8, 335-340 (1981) · Zbl 0497.73020
[2] Panagiotopoulos, P. D., Nonconvex energy functions. Hemivariational inequalities and substationarity principles, Acta mech., 42, 160-183 (1983) · Zbl 0538.73018
[3] Panagiotopoulos, P. D.; Avdelas, A. Y., A hemivariational inequality approach to the unilateral contact problem and substationarity principles, Ingenieur-Archiv, 54, 404-412 (1984) · Zbl 0554.73094
[4] Panagiotopoulos, P. D., Inequality problems in mechanics and applications, (Convex and Nonconvex Energy Functions (1985), Birkhäuser: Birkhäuser Basel) · Zbl 0579.73014
[5] Duvaut, G.; Lions, J. L., Les Inéquations en Mécanique et en Physique (1972), Dunod: Dunod Paris · Zbl 0298.73001
[6] Ekeland, I.; Temam, R., Convex Analysis and Variational Problems (1976), North-Holland: North-Holland Amsterdam, American Elsevier, New York
[7] Lions, J. L., Quelques Méthodes de Résolution des Problémes aux Limites non Lineaires (1969), Dunod/Gauthier-Villars: Dunod/Gauthier-Villars Paris · Zbl 0189.40603
[8] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and their Applications (1980), Academic Press: Academic Press New York · Zbl 0457.35001
[9] Clarke, F. H., Generalized gradients and applications, Trans. Am. math. Soc., 205, 247-262 (1975) · Zbl 0307.26012
[10] Clarke, F. H., Generalized gradients of Lipschitz functions, Adv. Math., 40, 52-67 (1981) · Zbl 0463.49017
[11] Chang, K. C., Variational methods for non-differentiable functionals and their applications to partial differential equations, J. math. Analysis Applic., 80, 102-129 (1981) · Zbl 0487.49027
[12] Rauch, J., Discontinuous semilinear differential equations and multiple valued maps, Proc. Am. math. Soc., 64, 277-282 (1977) · Zbl 0413.35031
[13] Browder, F. E.; Hess, P., Nonlinear mappings of monotone type in Banach spaces, J. funct. Analysis, 11, 251-294 (1972) · Zbl 0249.47044
[14] Rockafellar, R. T., Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math., XXII, 257-280 (1980) · Zbl 0447.49009
[15] Rockafellar, R. T., Directionally Lipschitzian functions and subdifferential calculus, Proc. Lond. math. Soc., 39, 331-355 (1979) · Zbl 0413.49015
[16] Rockafellar, R. T., Clarke’s tangent cones and the boundaries of closed sets in \(R^3\), Nonlinear Analysis, 3, 145-154 (1979) · Zbl 0443.26010
[17] Clarke, F. H., A new approach to Lagrange multipliers, Math. Op. Res., 1, 165-174 (1976) · Zbl 0404.90100
[20] Brézis, H., Equations et inéquations non-linéaires dans les espaces véctoriels en dualité, Annls Inst. Fourier Univ. Grenoble, 18, 115-176 (1968) · Zbl 0169.18602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.