×

Properties of generalized predictive control. (English) Zbl 0699.93028

Summary: Control design using long-range prediction based on a dynamic model of the plant has become an important contender for high-performance applications. The model can be derived analytically, but more typically it is provided by simple experiments, or in the adaptive context by recursive estimation.
Many methods have been proposed in the literature depending on the assumed model structure and the choice of cost-function: here the approach called generalized predictive control or (GPC) is reviewed. Of special interest is the derivation of prediction equations using an observer polynomial and a demonstration that the selection of particular horizons (the “costing horizons’ and the “control horizon”) leads to well-understood basic techniques such as dead-beat, pole-placement and LQ.
Simulated examples show that GPC is suitable for controlling a complex plant such as unstable/inverse unstable systems and how the observer polynomial independently tailors the response to the disturbances. Preprogrammed set-points (as with robot trajectory control) and actuator nonlinearities can also be catered for. A discussion of adaptive applications of GPC to several industrial process concludes that the method is easy to use and effective.

MSC:

93B50 Synthesis problems
93B07 Observability
93B35 Sensitivity (robustness)
93C40 Adaptive control/observation systems

Software:

FAUST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Assaf, Y., Self-tuning control: theory and applications, (D.Phil. Thesis (1988), Oxford University)
[2] Åström, K. J.; Wittenmark, B., On self-tuning regulators, Automatica, 9, 185-199 (1973) · Zbl 0249.93049
[3] Bruijn, P. M.; Bootsma, L. J.; Verbruggen, H. B., Predictive control using impulse response models, (IFAC Symp. on Digital Computer Applications to Process Control. IFAC Symp. on Digital Computer Applications to Process Control, Dusseldorf, F.R.G. (1980)) · Zbl 0534.93039
[4] Bruijn, P. M.; Verbruggen, H. B., Model algorithmic control using impulse response models, Journal A, 25, 69-74 (1984) · Zbl 0534.93039
[5] Clarke, D. W., Self-tuning control of nonminimum-phase systems, Automatica, 20, 501-517 (1984) · Zbl 0548.93049
[6] Clarke, D. W.; Gawthrop, P. J., Self-tuning controller, (Proc. IEE, 122 (1975)), 929-934 · Zbl 0507.93048
[7] Clarke, D. W.; Kanjilal, P. P.; Mohtadi, C., A generalized LQG approach to self-tuning control, Int. J. Control, 41, 1509-1544 (1985) · Zbl 0576.93046
[8] Clarke, D. W.; Zhang, L., Long-range predictive control using weighting-sequence models, (Proc. IEE, 134 (1987)), 187-195, Pt.D · Zbl 0629.93038
[9] Clarke, D. W.; Mohtadi, C.; Tuffs, P. S., Generalized predictive control, Automatica, 23, 137-160 (1987), Parts 1 and 2 · Zbl 0621.93033
[10] Cutler, C. R.; Ramaker, B. L., Dynamic matrix control—a computer control algorithm, (Proc. JACC. Proc. JACC, San Francisco, California (1980))
[11] Cutler, C. R.; Hawkins, R. B., Constrained multivariable control of a hydrocracker reactor, (Proc. ACC. Proc. ACC, Minneapolis, Minnesota (1987))
[12] Dawkins, J.; Briggs, P. A.N., A method for using weighting functions as system description in optimal control, (Proc. IFAC Symp.. Proc. IFAC Symp., Teddington, U.K. (1965))
[13] De Keyser, R. M.C.; Van Cauwenberghe, A. R., Self-tuning predictive control, Journal A, 22, 167-174 (1981)
[14] De Keyser, R. M.C.; Cauwenberghe, A. R., Applications of self-tuning predictive control, Journal A, 23, 1-10 (1982)
[15] De Keyser, R. M.C.; Van Cauwenberghe, A. R., Typical application possibilities for self-tuning predictive control, (Proc. IFAC. Symp. on Identification and System Parameter Estimation. Proc. IFAC. Symp. on Identification and System Parameter Estimation, Washington, DC (1982)) · Zbl 0506.93061
[16] De Keyser, R. M.C.; Cauwenberghe, A. R., Extended prediction adaptive control, (Proc. IFAC Symp. on Identification and System Parameter Estimation. Proc. IFAC Symp. on Identification and System Parameter Estimation, York, U.K. (1985)) · Zbl 0506.93061
[17] De Keyser, R. M.C.; Van de Velde, Ph. G.A.; Dumortier, F. A.G., A comparative study of self-adaptive long-range predictive control methods, Automatica, 24, 149-163 (1988) · Zbl 0638.93045
[18] Favier, G., Self-tuning long-range predictive controllers, (Proc. IFAC World Congress. Proc. IFAC World Congress, Munich, F.R.G. (1987))
[19] Garcia, C. E.; Morari, M., Internal Model Control. 1. A unifying review and some new results, I & EC Process Des. Dev., 21, 308-323 (1982)
[20] Gawthrop, P. J., (Continuous Time Self-tuning Control. Volume 1—Design (1987), Research Studies Press) · Zbl 0666.93044
[21] Jota, F. G., The application of self-tuning control technique to a multivariable process, (D.Phil. Thesis (1987), Oxford University)
[22] Karny, M.; Halouskova, A.; Bohm, J.; Kulhavy, R.; Nedoma, P., Design of linear quadratic adaptive control: theory and algorithms, Kybernetica Supplement (1985) · Zbl 0586.93040
[23] Kleinman, D. L., Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation, IEEE Trans. Aut. Control, AC-19, 252-254 (1974) · Zbl 0297.93046
[24] Kwon, W. H.; Pearson, A. E., On the stabilization of a discrete constant linear system, IEEE Trans. Aut. Control, AC-20, 800-801 (1975) · Zbl 0319.93040
[25] Lambert, E., The industrial application of long range prediction, (D.Phil. Thesis (1987), Oxford University)
[26] Lambert, M., Adaptive control of flexible systems, (D.Phil. Thesis (1987), Oxford University)
[27] Lawson, C. L.; Hanson, R. J., (Solving Least-squares Problems (1974), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey) · Zbl 0860.65028
[28] Lelic, M. A.; Wellstead, P. E., A generalized pole-placement self-tuning controller. Part II—an application to robot manipulator control, Int. J. Control, 46, 569-602 (1987) · Zbl 0652.93020
[29] Little, D. L.; Edgar, T. F., Predictive control using constrained optimal control, (Proc. ACC. (1986))
[30] Ljung, L., (System Identification (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey) · Zbl 0639.93059
[31] Martin, G. D., Long-range predictive control, A.I.Ch.E. J., 27, 748-753 (1981)
[32] Maurath, P. R.; Seborg, D. E.; Mellichamp, D. A., Predictive controller design by principal components analysis, (Proc. ACC. Proc. ACC, Boston, Massachusetts (1985))
[33] Mehra, R. K.; Kessel, W. C.; Rault, A.; Richalet, J.; Papon, J., Model algorithmic control using IDCOM for the F100 jet engine multivariable control design problem, (Sain, M. K.; Peczkowski, J. L.; Melsa, J. L., Alternatives for Linear Multivariable Control (1978))
[34] Menga, G.; Mosca, E., MUSMAR: a new class of multivariable adaptive regulators, (Proc. IFAC Symp. on Identification and System Parameter Estimation. Proc. IFAC Symp. on Identification and System Parameter Estimation, Darmstadt, F.R.G. (1979))
[35] Mohtadi, C., Studies in advanced self-tuning algorithms, (D.Phil. Thesis (1986), Oxford University)
[36] Mohtadi, C., On the role of prefiltering in parameter estimation and control, (Workshop on Adaptive Control Strategies for Industrial Use. Workshop on Adaptive Control Strategies for Industrial Use, Banff, Canada (1988)) · Zbl 0686.93091
[37] Mohtadi, C.; Clarke, D. W., Generalized predictive control, LQ, or pole-placement: a unified approach, (Proc. CDC. Proc. CDC, Athens, Greece (1986)) · Zbl 0699.93028
[38] Montague, G. A.; Morris, A. J.; Wright, A. R.; Aynsley, M.; Ward, A. C., Online estimation and adaptive control of penicillin fermentation, (Proc. IEE, 133 (1986)), 240-246, Pt.D · Zbl 0595.93038
[39] Morshedi, A. M.; Cutler, C. R.; Skrovanek, T. A., Optimal solution of dynamic matrix control with linear programming techniques (LDMC), (Proc. ACC. Proc. ACC, Boston, Massachusetts (1985))
[40] M’Saad, M.; Duque, M.; Landau, D., Thermal process robust adaptive control, (Proc. IFAC World Congress. Proc. IFAC World Congress, Munich, F.R.G. (1987))
[41] Peterka, V., Predictor-based self-tuning control, Automatica, 20, 39-50 (1984) · Zbl 0539.93054
[42] Reid, J. G.; Chaffin, D. E.; Silverthorn, J. T., Output predictive algorithmic control: precision tracking with application to terrain following, AIAA J. Guidance Control, 4, 502-509 (1981)
[43] Reid, J. G.; Mehra, R. K.; Kirkwood, E., Robustness properties of output predictive dead-beat control: SISO case, (Proc. CDC. Proc. CDC, Fort Lauderdale, Florida (1979))
[44] Richalet, J.; Rault, A.; Testud, J. L.; Papan, J., Model predictive heuristic control: applications to industrial processes, Automatica, 14, 413-428 (1978)
[45] Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G., Robustness of adaptive control algorithms in the presence of unmodelled dynamics, (Proc. CDC (1982)) · Zbl 0566.93034
[46] Rouhani, R.; Mehra, R. K., Model algorithmic control (MAC); basic theoretical properties, Automatica, 18, 401-414 (1982) · Zbl 0483.93045
[47] Shah, S. L.; Mohtadi, C.; Clarke, D. W., Multivariable adaptive control without a prior knowledge of the delay matrix, Sys. Control Lett., 9, 295-306 (1987) · Zbl 0623.93048
[48] Tacey, E., The thought processors, The Engineer (1987), May
[49] Tsang, T. C.T.; Clarke, D. W., Generalized predictive control with input constaints, (Proc. IEE, 135 (1988)), 451-460, Pt.D · Zbl 0671.93064
[50] Tuffs, P. S.; Clarke, D. W., FAUST: A software package for self-tuning control, (Proc. IEEE Conf. Control ’85. Proc. IEEE Conf. Control ’85, Cambridge, U.K. (1985)) · Zbl 0571.93044
[51] Tuffs, P. S.; Clarke, D. W., Self-tuning control of offset: a unified approach, (Proc. IEE, 132 (1985)), 100-110, Pt.D · Zbl 0571.93044
[52] Van Cauwenberghe, A. R.; De Keyser, R. M.C., Self-adaptive long-range predictive control, (Proc. ACC. Proc. ACC, Boston, Massachusetts (1985)) · Zbl 0506.93061
[53] Ydstie, B. E., Extended horizon adaptive control, (Proc. IFAC 9th World Congress. Proc. IFAC 9th World Congress, Budapest, Hungary (1984)) · Zbl 0572.93070
[54] Wellstead, P. E.; Prager, D.; Zanker, P., Pole assignment self-tuning regulator, (Proc. IEEE, 126 (1979)), 781-787 · Zbl 0422.93096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.