Positive solutions to \(X=A-BX^{-1}B^*\). (English) Zbl 0702.15009

The authors study the positive (semidefinite) solutions to the matrix equation \(X=A-BX^{-1}B^*\) under the assumption that \(A\geq 0\). It is shown that positive solutions exist if and only if a certain block tridiagonal operator is positive, in which case the solution is given by the generalized Schur complement of that operator. The Schur complement is considered to act on a proper subspace of a finite or infinite dimensional Hilbert space with inner product.
Reviewer: M.de la Sen


15A24 Matrix equations and identities
15B48 Positive matrices and their generalizations; cones of matrices
Full Text: DOI


[1] Anderson, W. N., Shorted operators, SIAM J. Appl. Math., 20, 520-525 (1971) · Zbl 0217.05503
[2] Anderson, W. N.; Kleindorfer, G. B.; Kleindorfer, M. B.; Woodroofe, M. B., Consistent estimates of the parameters of a linear system, Ann. Math. Statist., 40, 2064-2075 (1969) · Zbl 0213.20703
[3] Anderson, W. N.; Morley, T. D.; Trapp, G. E., Characterization of parallel subtraction, Proc. Nat. Acad. Sci. U.S.A., 76, 3599-3601 (1979) · Zbl 0456.47022
[4] Anderson, W. N.; Morley, T. D.; Trapp, G. E., Ladder networks, fixed points, and the geometric mean, Circuits Systems Signal Process., 3, 259-268 (1983) · Zbl 0526.94017
[5] Anderson, W. N.; Morley, T. D.; Trapp, G. E., The cascade limit, the shorted operator and quadratic optimal control, (Byrnes, Christopher I.; Martin, Clyde F.; Saeks, Richard E., Linear Circuits, Systems and Signal Processing: Theory and Application (1988), North-Holland: North-Holland New York), 3-7 · Zbl 0675.93020
[6] Anderson, W. N.; Trapp, G. E., Shorted operators II, SIAM J. Appl. Math., 28, 60-71 (1975) · Zbl 0295.47032
[7] Ando, T., Topics on Operator Inequalities, Lecture Notes (1978), Hokkiado Univ: Hokkiado Univ Sapporo, Japan · Zbl 0388.47024
[8] Ando, T., Structure of operators with numerical radius one, Acta Sci. Math. (Szeged), 34, 11-15 (1973) · Zbl 0258.47001
[9] Ando, T., Limit of cascade iteration of matrices, Numer. Funct. Anal. Optim., 21, 579-589 (1980)
[10] Bucy, R. S., A priori bounds for the Riccati equation, (Proceedings of the Sixth Berkley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory (1972), Univ. of California Press: Univ. of California Press Berkeley), 645-656 · Zbl 0255.93025
[11] Butler, C. A.; Morley, T. D., A note on the shorted operator, SIAM J. Matrix Anal. Appl., 9, 147-155 (1988) · Zbl 0646.15002
[13] Carlson, D.; Haynsworth, E. V.; Markham, T., A generalization of the Schur complement by means of the Moore-Penreose inverse, SIAM J. Appl. Math., 26, 254-259 (1974)
[15] Fujii, J., Arithmetic-geometric mean of operators, Math. Japon., 23, 667-669 (1979) · Zbl 0407.47011
[16] Fujii, J., On the geometric and harmonic means of positive operators, Math. Japon., 23, 203-207 (1979) · Zbl 0479.47014
[17] Green, W. L.; Kamen, E., Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems, SIAM J. Control Optim., 23, 1-18 (1985) · Zbl 0564.93054
[18] Krein, M. G., The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, II, Mat. Sb. (N. S.), 21, 63, 365-404 (1947) · Zbl 0167.13403
[19] Kubo, F.; Ando, T., Means of positive operators, Math. Ann., 246, 205-224 (1980) · Zbl 0412.47013
[21] Ouellette, D. V., Schur complements and statistics, Linear. Algebra Appl., 36, 187-295 (1981) · Zbl 0455.15012
[22] Pusz, W.; Woronowitz, S. L., Functional calculus for sequilinear forms and the purification map, Rep. Math. Phys., 8, 159-170 (1975) · Zbl 0327.46032
[24] Trapp, G. E., Hermitian semidefinite matrix means and related matrix inequalities—an introduction, Linear and Multilinear Algebra, 16, 113-123 (1984) · Zbl 0548.15013
[25] Trapp, G. E., The Ricatti equation and the geometric mean, Contemp. Math., 47, 437-445 (1985)
[26] Zabezyk, J., Remarks on the control of discrete time distributed parameter systems, SIAM J. Control, 12, 721-735 (1974) · Zbl 0254.93027
[27] Zemanian, A., Non-uniform semi-infinite grounded grids, SIAM J. Appl. Math., 13, 770-788 (1982) · Zbl 0489.94029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.