Sołtysiak, Andrzej A note on the almost left and almost right joint spectra of R. Harte. (English) Zbl 0704.46028 Commentat. Math. Univ. Carol. 30, No. 2, 317-320 (1989). It is shown here that a complex unitial normed algebra A has a nonzero continuous multiplicative linear functional if and only if for each finite subset \(\{a_ 1,...,a_ n\}\) of A the almost left (or right) joint spectrum \({\tilde \sigma}{}_{\ell}(a_ 1,..,a_ n)\) (or \({\tilde \sigma}{}_ r(a_ 1,..,a_ n))\) is nonempty, in which \({\tilde \sigma}{}_{\ell}(a_ 1,...,a_ n)=\{(\lambda_ 1,...,\lambda_ n)\in {\mathbb{C}}^ n:\) \(1\not\in [\sum^{n}_{i=1}A(a_ i-\lambda_ i)]^-\}\). Reviewer: T.Husain MSC: 46H05 General theory of topological algebras 47A10 Spectrum, resolvent Keywords:complex unitial normed algebra; nonzero continuous multiplicative linear functional; almost left (or right) joint spectrum PDF BibTeX XML Cite \textit{A. Sołtysiak}, Commentat. Math. Univ. Carol. 30, No. 2, 317--320 (1989; Zbl 0704.46028) Full Text: EuDML OpenURL