Lowen, E.; Lowen, R. Topological quasitopos hulls of categories containing topological and metric objects. (English) Zbl 0706.18002 Cah. Topologie Géom. Différ. Catég. 30, No. 3, 213-228 (1989). For the topological categories TOP and UNIF, the topological quasitopos hulls have been described by O. Wyler [Lect. Notes Math. 540, 699- 719 (1976; Zbl 0354.54001)] and by J. Adámek and J. Reiterman [Topology Appl. 27, 97-104 (1987; Zbl 0653.18007)], respectively. The authors of the paper under review undertake this task for the category of approach spaces, as introduced by the second author [Math. Nachr. 141, 183-226 (1989; Zbl 0676.54012)]; roughly, an approach space is a set which comes equipped with a function measuring the distance between points and subsets. The category AP of approach spaces gives a common roof to topological and certain generalized metric spaces. It is topological but neither hereditary [in the sense of H. Herrlich, Topology Appl. 27, 145-155 (1987; Zbl 0632.54008)] nor cartesian closed. Previously, the authors had shown that the category CAP of convergence approach spaces is a topological quasitopos containing AP [Int. J. Math. Math. Sci. 11, 417-438 (1988; Zbl 0672.54003)]. In this paper they identify the quasitopos hull of AP as a certain bireflective subcategory of CAP for which they give various descriptions. Reviewer: W.Tholen Cited in 2 ReviewsCited in 21 Documents MSC: 18B30 Categories of topological spaces and continuous mappings (MSC2010) 18B25 Topoi 54A05 Topological spaces and generalizations (closure spaces, etc.) 54B30 Categorical methods in general topology Keywords:pseudo-approach space; topological quasitopos hulls; category of approach spaces; convergence approach spaces; bireflective subcategory Citations:Zbl 0354.54001; Zbl 0653.18007; Zbl 0676.54012; Zbl 0632.54008; Zbl 0672.54003 PDFBibTeX XMLCite \textit{E. Lowen} and \textit{R. Lowen}, Cah. Topologie Géom. Différ. Catégoriques 30, No. 3, 213--228 (1989; Zbl 0706.18002) Full Text: Numdam EuDML References: [1] 1 J. Adamek & J. Reiterman . On the quasitopos hull of the categories of uniform and merotopic spaces , Int. Conf. Cat. Topol. L’Aquila ( 1986 ). MR 852312 [2] 2 G. Bourdaud . Espaces d’Antoine et semi-espaces d’Antoine, Cahiers Top. et Géom . Diff. XVI- 2 ( 1975 ), 107 - 133 . Numdam | MR 394529 | Zbl 0315.54005 · Zbl 0315.54005 [3] 3 G. Bourdaud , Some cartesian closed topological categories of convergence spaces . Lecture Notes in Math. 540 , Springer ( 1976 ), 93 - 108 . MR 493924 | Zbl 0332.54004 · Zbl 0332.54004 [4] 4 E.J. Dubuc . Concrete quasitopoi , Lecture Notes in Math. 753 , Springer ( 1979 ). 239 - 254 . MR 555548 | Zbl 0423.18006 · Zbl 0423.18006 [5] 5 H. Herrlich , Topological structures , Math. Centre Tracts 25 ( 1974 ). 59 - 122 . MR 358706 | Zbl 0311.54003 · Zbl 0311.54003 [6] 6 H. Herrlich , Topological improvements of categories of structured sets . Top. & Appl. 27 ( 1987 ), 145 - 155 . MR 911688 | Zbl 0632.54008 · Zbl 0632.54008 · doi:10.1016/0166-8641(87)90101-5 [7] 7 H. Herrlich . Hereditary topological constructs . Preprint. · Zbl 0662.18003 [8] 8 H. Herrlich & L.D. Nel . Cartesian closed topological hulls , Proc. A. M. S. 62 ( 1977 ), 215 - 222 . MR 476831 | Zbl 0361.18006 · Zbl 0361.18006 · doi:10.2307/2041017 [9] 9 H. Herrlich & G. Strecker . Category, Theory , Heldermann . MR 571016 | Zbl 0437.18001 · Zbl 0437.18001 [10] 10 H.J. Kowalsky , Limesraüme und Komplettierung , Math. Nachr. 12 ( 1954 ). 301 - 340 . MR 73147 | Zbl 0056.41403 · Zbl 0056.41403 · doi:10.1002/mana.19540120504 [11] 11 C. Kuratowski . Sur les espaces complets . Fund. Math. 15 ( 1930 ). 301 - 309 . Article | JFM 56.1124.04 · JFM 56.1124.04 [12] 12 E & R. Lowen . A quasitopos containing CONV and MET as full subcategories . Intern. J. Math. & Math. Sci. 11 ( 1988 ), 417 - 438 . MR 947271 | Zbl 0672.54003 · Zbl 0672.54003 · doi:10.1155/S016117128800050X [13] 13 R. Lowen . Approach spaces: a common supercategory of TOP and MET . Math. Nachr. 141 ( 1989 ), 183 - 226 . MR 1014427 | Zbl 0676.54012 · Zbl 0676.54012 · doi:10.1002/mana.19891410120 [14] 14 R. Lowen , Kuratowski’s measure of non-compactness revisited. Quater . J. Math. Oxford 39 ( 1988 ), 235 - 254 . MR 947504 | Zbl 0672.54025 · Zbl 0672.54025 · doi:10.1093/qmath/39.2.235 [15] 15 R. Lowen . Cantor’s Kettenzussamenhang revisited , Preprint. [16] 16 L.D. Nel . Cartesian closed topological categories . Lecture Notes in Math. 540 . Springer ( 1976 ), 439 - 451 . MR 447369 | Zbl 0336.54006 · Zbl 0336.54006 [17] 17 L.D. Nel . Topological universes and smooth Gelfand-Naimark duality . Contemporary Math. 30 ( 1984 ). 244 - 276 . MR 749775 | Zbl 0548.46054 · Zbl 0548.46054 [18] 18 J. Penon . Sur les quasi-topos . Cahiers Top. et Géom. Diff. XVIII ( 1977 ). 181 - 218 . Numdam | MR 480693 | Zbl 0401.18002 · Zbl 0401.18002 [19] 19 G.E. Preuss . Allgemeine Topologie. Hochschultext . Springer , 1972 . MR 370455 | Zbl 0242.54001 · Zbl 0242.54001 [20] 20 O. Wyler . Are there topoi in Topology ? Lecture Notes in Math. 540 . Springer ( 1976 ). 699 - 719 . MR 458346 | Zbl 0354.54001 · Zbl 0354.54001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.