×

Iwasawa L-functions for multiplicative abelian varieties. (English) Zbl 0716.14008

Iwasawa L-functions for abelian varieties with multiplicative reductions are studied, extending some results proved by B. Mazur in Invent. Math. 18, 183-266 (1972; Zbl 0245.14015) for abelian varieties with good ordinary reductions.
Let \(p\neq 2\) be a prime, \(\Gamma ={\mathbb{Z}}_ p\) (as an additive topological group) with a generator \(\gamma\), and \(\Lambda:=\lim_{{\leftarrow \nu}}{\mathbb{Z}}_ p[\Gamma /p^{\nu}\Gamma] \). Then the map which sends T to \(\gamma\)-1 induces an isomorphism from \({\mathbb{Z}}_ p[[T]]\) to \(\Lambda\). The Iwasawa L-function for an elliptic curve was defined as the characteristic polynomial of the p-Selmer group of the curve. To generalize this definition to abelian varieties, one needs “good” \(\Lambda\)-modules which are finitely generated modules M over \(\Lambda\). Such a module is quasi-isomorphic to the direct sum \(\Lambda^{\rho}\oplus {\mathbb{Z}}/p^{\mu_ i}{\mathbb{Z}}[[T]]\oplus (\oplus_{j}{\mathbb{Z}}_ p[[T]](F_ j)^{n_ j})\) where \(\rho\) is the free rank of M, \(F_ j\) is an irreducible distinguished polynomial for each j. The invariants \((\rho,\mu_ i,\{F_ j^{n_ j}\})\) determine M completely up to quasi-isomorphism (i.e., up to finite kernel and cokernel). The \(\mu\)-invariant of M is \(\mu:=\sum_{i}\mu_ i \), the characteristic polynomial of M is \(F_ M(T):=p^{\mu}\prod_{j}(F_ j(T))^{n_ j} \) and \(f_ M(t)\) is the polynomial satisfying \(f_ M(T+1)=F_ M(T).\)
Let K be a number field with ring of integers \({\mathfrak O}_ K\). Let \(A_{/K}\) be an abelian variety defined over K, A its Néron model over \({\mathfrak O}_ K\), \(\tilde A\) the dual abelian variety of A, \(A^ 0\) the connected component of A and \(A_{p^{\infty}}:=\cup_{\nu}A_{p^{\nu}} \). Let \(\Phi\) be defined by the short exact sequence \(0\to A^ 0\to A\to \Phi \to 0\). Let L/K be a \(\Gamma\)-extension of K, T the set of all primes in K ramifying in L, \(\log_ p\) a p-adic logarithm of L/K, \(\kappa: Gal(L/K)\to 1+p^ e{\mathbb{Z}}_ p\subset {\mathbb{Z}}^*_ p\) a fixed continuous character compatible with \(\log_ p\). If \(\nu\in T\), \(e_{\nu}\) denotes the dimension of a maximal split subtorus in the reduction of A at \(\nu\) and \(e:=\sum_{\nu}e_{\nu}.\)
Assume that A satisfies the following hypothesis:
1. \({Sh}_{p^{\infty}}(K)\) is finite.
2. Every prime of K for which A has bad reduction splits finitely in L.
3. The reduction of A is semistable at every place of K dividing p and is an extension of an ordinary abelian variety by a torus for every \(t\in T.\)
4. For every place \(t\in T\), the universal norm of \(A(L_ t)\) is of finite index in \(A(K_ t).\)
There is a p-adic height pairing \(<, >_ p\) on A such that \(<, >_ p:=<, >_{\gamma}\log_ p\kappa (\gamma)\), where \(<, >_{\gamma}\) is a p-adic height pairing defined by the author [“p-adic heights for semistable abelian varieties”, Compos. Math. (to appear)] and is equivalent to Schneider’s analytic height [P. Schneider, Invent. Math. 69, 401-409 (1982; Zbl 0509.14048)]. A necessary and sufficient condition for \(<, >_ p\) to be nondegenerate is obtained. Further, define the groups \({\mathcal I}:=Image[H^ 1({\mathfrak O}_ K,A^ 0_{p^{\infty}})\to H^ 1({\mathfrak O}_ K-T,A^ 0_{p^{\infty}})]\) and \({\mathcal I}_{\infty}:=Image[H^ 1({\mathfrak O}_ L,A^ 0_{p^{\infty}})\to H^ 1({\mathfrak O}_ L-T,A^ 0_{p^{\infty}})]\). (They are quasi-isomorphic to the classical p- Selmer group of A over K and L, respectively.) Write \(A_{p^{\infty}}(L)=A_{p^{\infty}}^{\inf}(L)\oplus A_{p^{\infty}}^{fin}(L)\) where \(A_{p^{\infty}}^{\inf}\) is the divisible subgroup of \(A_{p^{\infty}}(L)\). Then one can define \(A_{p^{\infty}}^{fin}(K)\) to be the K-rational points of \(A_{p^{\infty}}^{fin}(L)\). Define the \({\mathcal L}_{\nu}\)-invariant of A with respect to L/K at a place \(\nu\in T\) by \({\mathcal L}_{\nu}(A):=(A(K_{\nu})/NA(K_{\nu}))/(\Phi ({\mathfrak O}_{K_{\nu}})| \log_ p\kappa (\gamma)|_ p^{e_{\nu}})\) and define the global \({\mathcal L}\)-invariant of A with respect to L/K by \({\mathcal L}(A):=\prod_{\nu \in T}{\mathcal L}_{\nu}(A).\)
The main result of the paper is to define a “good” \(\Lambda\)-module, H, which is subject to a quasi-exact sequence \[ 0\to {\mathcal I}_{\infty}\to H\to ({\mathbb{Q}}_ p/{\mathbb{Z}}_ p)^ e\to 0\quad or\quad 0\to ({\mathbb{Q}}_ p/{\mathbb{Z}}_ p)^ e\to H\to {\mathcal I}_{\infty}\to 0 \] where \(\Gamma\) acts trivially on the \(({\mathbb{Q}}_ p/{\mathbb{Z}}_ p)^ e\) term. Let \(f_ H(t)=(t-1)^ ef_{{\mathcal I}}(t)\), and define a p-adic L-function \(L_ H(s):=f_ H(\kappa (\gamma)^{1-s})\). (This is a candidate for the p- adic L-function of an ordinary abelian variety A which is semistable at p.) Let \(\rho =ord_{s=1}L_ H(s)\) and \(r=rank_{{\mathbb{Z}}}A(K)\). Then the main result of this paper is formulated in the following theorem:
One has \(\rho \geq r+e\). If \(<\,\;>_ p\) is nondegenerate, then \(\rho =r+e\) and the \(\rho\)-th derivative of \(L_ H(s)\) has the following value at \(s=1:\) \[ L_ H^{(\rho)}(1)\approx {\mathcal L}(A)\frac{\det<\,\;>_ p{Sh}_ K}{A_{p^{\infty}}^{fin}(K)\tilde A_{p^{\infty}}^{fin}(K)}\cdot \prod_{\ell \nmid \infty}m_{\ell}, \] where \(m_{\ell}\) denotes the number of connected components in the fibre of A over \(\ell\) and \(a\approx b\) means that a and b have the same p-norm.
A functional equation for \(L_ H(s)\) is also proved. That is, \(f_ H(t)=(-1)^{\rho}t^{\lambda}f_ H(1/t)\) where \(\lambda\) is the \(\lambda\)-invariant of H and \(\rho\) is the multiplicity of the root of 1 in \(f_ H(t)\), and similarly, \(L_ H(s)=(-1)^{\rho}\kappa (\gamma)^{\lambda (1-s)}L_ H(2-s)\). Several candidates for such a \(\Lambda\)-module are tested, e.g., \(H^ 1({\mathfrak O}_ L,A^ 0_{p^{\infty}})\), \(H^ 1({\mathfrak O}_ L,A_{p^{\infty}})\), and Greenberg’s module.
Reviewer: N.Yui

MSC:

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14K05 Algebraic theory of abelian varieties
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
Full Text: DOI

References:

[1] D. Bernardi and C. Goldstein, Variante \(p\)-adique de la conjecture de Birch et Swinnerton-Dyer , C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10, 455-458. · Zbl 0597.14017
[2] D. Bernardi, C. Goldstein, and N. Stephens, Notes \(p\)-adiques sur les courbes elliptiques , J. Reine Angew. Math. 351 (1984), 129-170. · Zbl 0529.14018
[3] S. Bosch and W. Lütkebohmert, Stable reduction and uniformization of abelian varieties II , Invent. Math. 78 (1984), no. 2, 257-297. · Zbl 0554.14015 · doi:10.1007/BF01388596
[4] R. Greenberg, Iwasawa theory for \(p\)-adic representations , · Zbl 0739.11045
[5] J. Jones, Galois cohomology and parameterizations of semistable abelian varieties , manuscript.
[6] J. Jones, \(p\)-adic heights for semistable abelian varieties , Composito Math., · Zbl 0743.14031
[7] B. Mazur, Rational points of abelian varieties with values in towers of number fields , Invent. Math. 18 (1972), 183-266. · Zbl 0245.14015 · doi:10.1007/BF01389815
[8] B. Mazur and J. Tate, Canonical height pairings via biextensions , Arithmetic and Geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser, Boston, 1983, pp. 195-237. · Zbl 0574.14036
[9] B. Mazur, J. Tate, and J. Teitelbaum, On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer , Invent. Math. 84 (1986), no. 1, 1-48. · Zbl 0699.14028 · doi:10.1007/BF01388731
[10] W. McCallum, Duality theorems for Néron models , Duke Math. J. 53 (1986), no. 4, 1093-1124. · Zbl 0623.14023 · doi:10.1215/S0012-7094-86-05354-8
[11] A. Nasybullin, Elliptic Tate curves over local \(\Gamma\)-extensions , Math. Notes of U.S.S.R. 13 (1973), 322-327. · Zbl 0268.14011 · doi:10.1007/BF01146567
[12] B. Perrin-Riou, Descente infinie et hauteur \(p\)-adique sur les courbes elliptiques à multiplication complexe , Invent. Math. 70 (1982/83), no. 3, 369-398. · Zbl 0547.14025 · doi:10.1007/BF01391797
[13] P. Schneider, \(p\)-adic height pairings I , Invent. Math. 69 (1982), no. 3, 401-409. · Zbl 0509.14048 · doi:10.1007/BF01389362
[14] P. Schneider, Iwasawa \(L\)-functions of varieties over algebraic number fields: A first approach , Invent. Math. 71 (1983), no. 2, 251-293. · Zbl 0511.14010 · doi:10.1007/BF01389099
[15] P. Schneider, \(p\)-adic height pairings II , Invent. Math. 79 (1985), no. 2, 329-374. · Zbl 0571.14021 · doi:10.1007/BF01388978
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.