×

Counting points of small height on elliptic curves. (English) Zbl 0723.14026

Summary: Let k be a number field and let E be an elliptic curve defined over k. We prove a counting result which gives, among other things, the existence of a positive constant C, effectively computable in terms of k and E, with the following property: For any extension K of k of relative degree at most D (\(\geq 2)\), the absolute logarithmic canonical height of any non- torsion point of E(K) is at least \(CD^{-3}(\log (D))^{-2}\).

MSC:

14H52 Elliptic curves
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] ANDERSON (M.) and MASSER (D.W.) . - Lower bounds for heights on elliptic curves , Math. Z., t. 174, 1980 , p. 23-34. Article | MR 82g:10049 | Zbl 0421.14006 · Zbl 0421.14006 · doi:10.1007/BF01215078
[2] BROWNAWELL (W.D.) and MASSER (D.W.) . - Multiplicity estimates for analytic functions I , J. Reine Angew. Math., t. 314, 1979 , p. 200-216. MR 81j:10046a | Zbl 0417.10027 · Zbl 0417.10027 · doi:10.1515/crll.1980.314.200
[3] COHEN (P.) . - Explicit calculation of some effective constants in transcendence proofs , Ph. D. Thesis, University of Nottingham, 1985 , Chapter 3.
[4] DAVID (S.) . - Fonctions thêta et points de torsion des variétés abéliennes , C. R. Acad. Sci. Paris, t. 305, 1987 , p. 211-214. MR 89b:11047 | Zbl 0628.14035 · Zbl 0628.14035
[5] DOBROWOLSKI (E.) . - On a question of Lehmer and the number of irreducible factors of a polynomial , Acta Arith., t. 34, 1979 , p. 391-401. Article | MR 80i:10040 | Zbl 0416.12001 · Zbl 0416.12001
[6] FAISANT (A.) and PHILIBERT (G.) . - Quelques résultats de transcendance liés à l’invariant modulaire j , J. Number Theory, t. 25, 1987 , p. 184-200. MR 88f:11066 | Zbl 0633.10035 · Zbl 0633.10035 · doi:10.1016/0022-314X(87)90024-2
[7] HINDRY (M.) . - Géométrie et hauteurs dans les groupes algébriques , Thèse de Doctorat de l’Université Paris VI, 1987 .
[8] IGUSA (J.) . - Theta functions . - Berlin-Heidelberg-New York, Springer-Verlag, 1972 . MR 48 #3972 | Zbl 0251.14016 · Zbl 0251.14016
[9] LAURENT (M.) . - Minoration de la hauteur de Néron-Tate , [Séminaire de Théorie de Nombres, Paris 1981 - 2], Boston-Basel-Stuttgart, Birkhäuser, 1983 , pp. 137-152. MR 85e:11048 | Zbl 0521.14010 · Zbl 0521.14010
[10] MASSER (D.W.) . - Division fields of elliptic functions , Bull. London Math. Soc., t. 9, 1977 , p. 49-53. MR 56 #2922 | Zbl 0356.12018 · Zbl 0356.12018 · doi:10.1112/blms/9.1.49
[11] MASSER (D.W.) . - Small values of heights on families of abelian varieties , [Lecture Notes in Math., vol. 1290], New York-Berlin-Heidelberg-Tokyo, Springer-Verlag, 1987 , pp. 109-148. MR 89g:11048 | Zbl 0639.14025 · Zbl 0639.14025
[12] SILVERMAN (J.H.) . - Lower bounds for the canonical height on elliptic curves , Duke Math. J., t. 48, 1981 , p. 633-648. Article | MR 82k:14043 | Zbl 0475.14033 · Zbl 0475.14033 · doi:10.1215/S0012-7094-81-04834-1
[13] SILVERMAN (J.H.) . - The arithmetic of elliptic curves . - New York-Berlin-Heidelberg-Tokyo, Springer-Verlag, 1986 . MR 87g:11070 | Zbl 0585.14026 · Zbl 0585.14026
[14] ZIMMER (H.G.) . - On the difference of the Weil height and the Néron-Tate height , Math. Z., t. 147, 1976 , p. 35-51. Article | MR 54 #7476 | Zbl 0303.14003 · Zbl 0303.14003 · doi:10.1007/BF01214273
[15] ZIMMER (H.G.) . - Quasi-functions on elliptic curves over number fields , J. Reine Angew. Math., t. 307, 1979 , p. 221-246. MR 80g:14024 | Zbl 0399.14014 · Zbl 0399.14014 · doi:10.1515/crll.1979.307-308.221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.