×

On the stochastic Cahn-Hilliard equation. (English) Zbl 0729.60057

The Cahn-Hilliard equation is used in studying phase separation of binary alloys. The main result of this paper is the proof of the existence and properties of the strong solution \(u=u(t,x,\omega)\) for the equation \[ \partial u/\partial t+\gamma \Delta^ 2u-\Delta \phi (u)=\partial w/\partial t \] with boundary conditions of Neumann’s type and random initial condition \(u_ 0\), where \(\gamma >0\), \(\phi (u)=u^ 3-\beta u\), and w is a Wiener random field with given correlation function of the type min(t,s)k(x,y), x,y\(\in \Omega\), so that \(\partial w/\partial t\) is a process of white noise type.
According to the properties of \(u_ 0\), it is proven that, for example, in the case \(u_ 0\in H^ 1(\Omega)\), there exists a strong solution in the space \(L^ 2(0,T;V)\cap L^{\infty}(0,T;U)\cap C^ w([0,T];U'),\) where \(V=H^ 2_ E(\Omega)\), \(U=H^ 1(\Omega)\), and \(C^ w\) is the space of Hölder continuous functions connected with Lévy’s modulo of continuity for Brownian motion.
Reviewer: N.Elezović

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bensoussan, A.; Temam, R., Equations stochastiques du type Navier-Stokes, J. funct. Analysis, 13, 195-222 (1973) · Zbl 0265.60094
[2] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system, I. Interfacial free energy, J. chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066
[3] Chevet, S., Sur certains produits tensoriels topologique d’espaces de Banach, Z. Wahrsch. Verw. Geb., 11, 120-138 (1969) · Zbl 0177.16101
[4] Daleckiǐ, Ju. L.; Fomin, S. V., Measures and Differential Equations in Infinite Dimensional Spaces (1983), Nauka: Nauka Moscow, In Russian · Zbl 0536.46031
[5] Doering, Ch. R., Nonlinear parabolic stochastic differential equations with additive coloured noise \(R^d\) × \(R_+\): a regulated stochastic quantization, Communs math. Phys., 109, 537-561 (1987) · Zbl 0625.60069
[6] Elliott, C. M., The Cahn-Hilliard model for the kinetics of phase separation, (Rodrigues, J., Mathematical Models for Phase Change Problems, Vol. 88 (1989), Birkhäuser: Birkhäuser Stuttgart), 35-74 · Zbl 0692.73003
[7] Elliott, C. M.; Zheng, Songmu, On the Cahn-Hilliard equation, Archs ration. Mech. Analysis, 96, 339-357 (1986) · Zbl 0624.35048
[8] Elliott, C. M.; French, D. A., Numerical studies of the Cahn-Hilliard equation for phase separation, I.M.A. J. appl. Math., 38, 97-128 (1987) · Zbl 0632.65113
[9] Elliott, C. M.; French, D. A.; Milner, F. A., A second order splitting method for the Cahn-Hilliard equation, Num. Math., 54, 575-590 (1989) · Zbl 0668.65097
[10] Foias, C., Statistical study of Navier-Stokes equations I & II, Rend. Semn. mat. Univ. Padova, 49, 9-123 (1973) · Zbl 0283.76018
[11] Gunton, J. D.; San-Miguel, M.; Sahni, P. S., The dynamics of first-order phase transitions, (Domb, C.; Lebowitz, J., Phase Transitions and Critical Phenomena (1983), Academic Press: Academic Press New York)
[12] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. mod. Phys., 49, 435-479 (1977)
[13] Ikeda, N.; Watanabe, Sh., Stochastic Differential Equations and Diffusion Processes (1981), North-Holland: North-Holland Amsterdam · Zbl 0495.60005
[14] Langer, J. S., Theory of spinodal decomposition in alloys, Ann. Physics, 65, 53-86 (1975)
[15] Lions, J. L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications, Vols I and II (1972), Springer: Springer Berlin · Zbl 0227.35001
[16] Lions, J. L., Quelques methodes de resolution des problemes aux limites non linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[17] Nicolaenko, B.; Scheurer, B.; Temam, R., Inertial manifold for the Cahn-Hilliard model of phase transition, Dundee Conference on Ordinary and Partial Diff. Eq. (1987), to appear
[18] Orihara, A., On the statistical solutions of Navier-Stokes equation, J. Fac. Sci. Univ. Tokyo, Sect. IA, 34, 821-832 (1987) · Zbl 0652.76017
[19] Petschek, R.; Metiu, H., A computer simulation of the time-dependent Ginzburg-Landau model for spinodal decomposition, J. chem. Phys., 79, 3443-3456 (1983)
[20] Pietsch, A., Absolut \(p\)-summierende Abbildungen in normierte Rauman, Studia math., 28, 333-353 (1967) · Zbl 0156.37903
[21] Schwartz, L., Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (1973), Oxford University Press: Oxford University Press Bombay · Zbl 0298.28001
[22] Simon, J., Compact sets in the space \(L^p\)(O,\(T;B)\), Annali Mat. pura appl. IV Ser., CXLVI, 65-96 (1987) · Zbl 0629.46031
[23] Vishik, M. I.; Fursikov, A. V., Mathematical Problems of Statistical Hydromechanics (1988), Kluwer: Kluwer Dordrecht · Zbl 0688.35077
[24] Vishik, M. I.; Komech, A. I.; Fursikov, A. V., Some mathematical problems of statistical hydromechanics, Russ. Math. Survs, 34, 149-234 (1979) · Zbl 0503.76045
[25] Wloka, J., Partial Differential Equations (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0623.35006
[26] Zheng, Songmu, Asymptotic behavior of the solutions to the Cahn-Hilliard equation, Appl. Analysis, 23, 165-184 (1986) · Zbl 0582.34070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.