Voller, V. R.; Swaminathan, C. R.; Thomas, B. G. Fixed grid techniques for phase change problems: A review. (English) Zbl 0729.73237 Int. J. Numer. Methods Eng. 30, No. 4, 875-898 (1990). Summary: The aim of this paper is to categorize the major fixed grid formulations and solution methods for conduction controlled phase change problems. Using a two phase model of a solid/liquid phase change, the basic enthalpy equation is derived. Starting from this equation, a number of alternative formulations are obtained. All the formulations are reduced to a standard form. From this standard form, finite element and finite volume discretizations are developed. These discretizations are used as the basis for a number of fixed grid numerical solution techniques for solidification phase change systems. In particular, various apparent capacity and source based enthalpy methods are explored. Cited in 59 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 74S30 Other numerical methods in solid mechanics (MSC2010) Keywords:conduction controlled phase change problems; two phase model; solid/liquid phase change; enthalpy equation; finite volume discretizations PDF BibTeX XML Cite \textit{V. R. Voller} et al., Int. J. Numer. Methods Eng. 30, No. 4, 875--898 (1990; Zbl 0729.73237) Full Text: DOI References: [1] Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984. [2] Thomas, Metall. Trans. B 15 pp 307– (1984) [3] Dalhuijsen, Int. J. Numer. Methods Eng. 23 pp 1807– (1986) [4] Lewis, Appl. Sci. Res. 44 pp 61– (1987) [5] and , ’On numerical methods used in the mathematical modeling of phase change in the liquid metals’, ASME paper 86-WA/HT-22 (1986). [6] Salcudean, Int. J. Numer. Methods Eng. 28 pp 445– (1988) [7] Dantzig, Int. J. Numer. Methods Eng. 28 pp 1769– (1989) [8] Rappaz, Int. Mater. Rev. 34 pp 93– (1989) [9] Brent, Numer. Heat Transfer 13 pp 297– (1988) [10] Bennon, Metall. Trans. B 18 pp 611– (1987) [11] Beckermann, Pch 10 pp 195– (1988) [12] Voller, Int. J. Heat Mass Transfer 32 pp 1719– (1989) [13] Dantzig, Met. Sci. Tech. 7 (1989) [14] Stefanescu, Trans. Afs 95 pp 139– (1987) [15] and , ’Numerical simulation of the solidification of eutectic ductile iron casting alloys’, in R. W. Lewis and K. Morgan (eds.), Proc. Conf. on Numerical Methods in Thermal Problems 1989, pp. 267-279. [16] ’Melting and solidification of binary mixtures with double-diffusive convection in the melt’, Ph. D. Dissertation, Purdue Univ., Indiana, 1987. [17] Bachmat, Transport Porous Media 1 pp 213– (1986) [18] Bear, Transport Porous Media 1 pp 213– (1986) [19] Clyne, Met. Sci. 16 pp 441– (1982) [20] Comini, Int. J. Numer. Methods Eng. 8 pp 613– (1974) [21] Del Giudice, Int. J. Numer. Anal. Methods Geomech. 2 pp 223– (1978) [22] ’Phase change techniques for finite element codes’, in R. W. Lewis and K. Morgan (eds.). Proc. Conf. on Numerical Methods in Thermal Problems, 1979, pp. 149-158. [23] Morgan, Int. J. Numer. Methods Eng. 12 pp 1191– (1978) [24] Hsiao, Numer. Heat Transfer 8 pp 653– (1985) [25] Pham, Int. J. Heat Mass Transfer 29 pp 285– (1986) [26] and , ’Conservative equivalent heat capacity methods for nonlinear heat conduction’, in R. W. Lewis and K. Morgan (eds.), Proc. Conf. on Numerical Methods in Thermal Problems, 1989, pp. 5-15. [27] ’A fast implicit finite difference method for the analysis of phase change problems’, Numer. Heat Transfer, (in press). [28] Rolph, Int. J. Numer. Methods Eng. 18 pp 119– (1982) [29] Roose, Int. J. Numer. Methods Eng. 20 pp 217– (1984) [30] Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980. · Zbl 0521.76003 [31] Cao, Int. J. Heat Mass Transfer 22 pp 1289– (1989) [32] and , ’Accurate finite element method of solution of phase change problem based on enthalpy diffusion’, in R. W. Lewis and K. Morgan (eds.), Proc. Conf. on Numerical Methods in Thermal Problems, 1989, pp. 90-100. [33] Raw, Numer. Heat Transfer 8 pp 559– (1985) [34] White, Siam J. Numer. Anal. 23 pp 639– (1986) [35] and , ’Numerical methods for moving boundary problem’, in et al. (eds.), Handbook of Numerical Heat Transfer, Wiley, New York, 1988. [36] The Finite Element Method, McGraw-Hill, New York, 1977. [37] Numerical Heat Transfer, Hemisphere, Washington, 1984. · Zbl 0569.76002 [38] Ohnaka, Trans. Iron Steel Inst. Japan 17 pp 410– (1977) [39] and , ’Elliptic Systems: Finite element method II’, in et al. (eds.), Handbook of Numerical Heat Transfer, Wiley, New York, 1988. [40] Furzeland, J. Inst. Math. Applic. 26 pp 411– (1980) [41] Voller, Ima J. Numer. Anal. 5 pp 201– (1985) [42] Bonacina, Int. J. Heat Mass Transfer 16 pp 581– (1973) [43] Szekely, Trans. Met. Soc. Aime 242 pp 961– (1968) [44] ’On fixed grid approaches for modeling solidification problems’, MS Report, University of Minnesota, 1990. [45] ’A comparison of two and three level integration schemes for nonlinear heat conduction’, in et al. (eds.), Numerical Methods in Heat Transfer, Wiley, Chichester, U. K., 1981. [46] Sammonds, App. Math. Mod. 9 pp 170– (1985) [47] and , ’An implicit-explicit finite element microcomputer program for transient heat conduction analysis’, in and (eds.), Microcomputers in Engineering Applications, Wiley, New York, 1987. [48] Lewis, Numer. Heat Transfer 7 pp 471– (1984) [49] and , ’Finite difference solutions of solidification phase change problems: Transformed versus fixed grids’, Numer. Heat Transfer, in press. [50] Crivelli, Int. J. Numer. Methods Eng. 23 pp 99– (1986) [51] Crivelli, Int. J. Numer. Methods Eng. 24 pp 375– (1987) [52] Tacke, Int. J. Numer. Methods Eng. 21 pp 543– (1985) [53] and , ’Remeshing approaches to finite element simulation of casting problems’, presented in Heat Transfer in Phase Change Problems, Eurotherm Seminar 6, 1988. [54] Schreiber, Int. J. Numer. Methods Eng. 30 pp 679– (1990) [55] and , ’Recent advances and trends in enthalpy based Lax-Wendroff/Taylor-Galerkin finite element formulation for application to solidification problems’, in R. W. Lewis and K. Morgan (eds.), Proc. Conf. on Numerical Methods in Thermal Problems, 1989, pp. 267-279. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.