Ma, Tian; Yu, Qingyu The Keldysh-Fichera boundary value problems for degenerate quasilinear elliptic equations of second order. (English) Zbl 0731.35044 Differ. Integral Equ. 2, No. 4, 379-388 (1989). The authors consider the following equation \[ D_ i[a_{ij}(x,u)D_ ju+b_ i(x)u]-c(x,u)=f(x),\quad x\in \Omega \subset R^ m, \] where \(\beta^{-1}a_{ij}(x,0)\xi_ i\xi_ j\leq a_{ij}(x,z)\xi_ i\xi_ j\leq \beta a_{ij}(x,0)\xi_ i\xi_ j\), \(\beta =const>0\), \(\lambda (x)| \xi |^ 2\leq a_{ij}(x,0)\xi_ i\xi_ j\), \(\lambda\) (x)\(\geq 0\) on \({\bar \Omega}\), with boundary conditions \(u(x)=0\), \(x\in \Sigma_ 2\cup \Sigma_ 3\), where \(\Sigma_ 3=\{x\in \partial \Omega |\) \(a_{ij}(x,0)n_ in_ j>0\), \(\vec n=(n_ 1,...,n_ m)\) is the unit outward normal vector at \(x\in \partial \Omega \},\) \(\Sigma\) \({}_ 2=\{x\in \partial \Omega \setminus \Sigma_ 3| b_ i(x)n_ i>0\}\), \(\Sigma_ 1=\partial \Omega \setminus (\Sigma_ 2\cup \Sigma_ 3).\) Under some assumptions, the authors prove that the above problem has a weak solution (in some integral sense) which is also unique under additional restrictions. In this connection they establish an acute angle principle for weakly continuous mappings, discuss maximum and comparison principles and a maximum modulus estimate. Reviewer: G.V.Jaiani (Tbilisi) Cited in 1 ReviewCited in 5 Documents MSC: 35J70 Degenerate elliptic equations 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs 35D05 Existence of generalized solutions of PDE (MSC2000) Keywords:Keldysh-Fichera boundary value problems; uniqueness; acute angle principle; maximum modulus estimate × Cite Format Result Cite Review PDF