Stability of collocation-based Runge-Kutta-Nyström methods. (English) Zbl 0731.65071

The authors investigate the attainable order and the stability of collocation technique based Runge-Kutta-Nyström methods for the solution of certain second order systems of ordinary differential equations.
Reviewer: G.Merz (Vellmar)


65L20 Stability and convergence of numerical methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI


[1] Boor, C. R. de & Swartz, B. (1973):Collocation at Gaussian points, SIAM J. Numer. Anal. 10, 582–606. · Zbl 0232.65065
[2] Brunner, H & Houwen, P. J. van der (1986):The Numerical Solution of Volterra Equations, North-Holland, Amsterdam. · Zbl 0611.65092
[3] Butcher, J. C. (1987):The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods, Wiley, New York. · Zbl 0616.65072
[4] Dekker, K. & Verwer, J. G. (1984):Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam. · Zbl 0571.65057
[5] Hairer, E. (1977): Méthodes de Nyström pour l’équation différentielle y”=f(x,y), Numer. Math. 27, 283–300. · Zbl 0325.65033
[6] Hairer, E. (1979):Unconditionally stable methods for second order differential equations, Numer. Math. 32, 373–379. · Zbl 0393.65035
[7] Hairer, E., Nørsett, S. P. & Wanner, G. (1987):Solving Ordinary Differential Equations, I.Nonstiff Problems, Springer-Verlag, Berlin. · Zbl 0638.65058
[8] Houwen, P. J. van der (1977):Construction of Integration Formulas for Initial Value Problems, North-Holland, Amsterdam. · Zbl 0359.65057
[9] Houwen, P. J. van der & Sommeijer, B. P. (1991):Iterated Runge-Kutta methods on parallel computers, to appear in SSISC. · Zbl 0732.65065
[10] Houwen, P. J. van der, Sommeijer, B. P. & Nguyen huu Cong (1990):Stability of collocation-based Runge-Kutta-Nyström methods, Report NM-R9016, Centre for Mathematics and Computer Science, Amsterdam. · Zbl 0731.65071
[11] Jameson, A. (1983):The evolution of computational methods in aerodynamics, J. Appl. Mech. 50, 1052–1076. · Zbl 0556.76045
[12] Kramarz, L. (1980):Stability of collocation methods for the numerical solution of y”=f(x, y), BIT 20, 215–222. · Zbl 0425.65043
[13] Liniger, W. & Willoughby, R. A. (1970):Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Numer. Anal. 7, 47–66. · Zbl 0187.11003
[14] Rosenbrock, H. H. (1963):Some general implicit processes for the numerical solution of differential equations, Comput. J. 5, 329–330. · Zbl 0112.07805
[15] Watts, H. A. & Shampine, L. F. (1972):A-stable block implicit one-step methods, BIT 12, 252–266. · Zbl 0253.65045
[16] Wright, K. (1970):Some relationships between implicit Runge-Kutta, collocation and Lanczos {\(\tau\)} methods, and their stability properties, BIT 10, 217–227. · Zbl 0208.41602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.