zbMATH — the first resource for mathematics

Homology of categories via polygraphic resolutions. (English) Zbl 1472.18020
R. Street [J. Pure Appl. Algebra 49, 283–335 (1987; Zbl 0661.18005)] defined a nerve functor \[ N_{\omega}:\omega\boldsymbol{Cat}\rightarrow\widehat{\Delta} \] from the category of strict \(\omega\)-categories (called simply \(\omega \)-categories) to the category of simplicial sets, which can be used to transfer the homotopy theory of simplicial sets to \(\omega\)-categories [D. Ara and G. Maltsiniotis, Adv. Math. 259, 557–654 (2014; Zbl 1308.18004); Adv. Math. 328, 446–500 (2018; Zbl 1390.18011); High. Struct. 4, No. 1, 284–388 (2020; Zbl 07173321); A. Gagna, Adv. Math. 331, 542–564 (2018; Zbl 1395.18008); J. Lond. Math. Soc., II. Ser. 100, No. 2, 470–497 (2019; Zbl 1430.18021); P. Ara et al., Banach J. Math. Anal. 14, No. 4, 1692–1710 (2020; Zbl 1454.46052); D. Ara and G. Maltsiniotis, Mém. Soc. Math. Fr., Nouv. Sér. 165, 1–203 (2020; Zbl 1473.18001)]. In particular, we have the following definition.
Definition. Let \(C\) be an \(\omega\)-category and \(k\in\mathbb{N}\). The \(k\)-th homology group \(H_{k}(C)\) of \(C\) is the \(k\)-th homology group of its nerve \(N_{\omega}(C)\).
On the other hand, F. Métayer [Theory Appl. Categ. 11, 148–184 (2003; Zbl 1020.18001)] deined polygraphic homology groups, observing that
Every \(\omega\)-category admits a polygraphic resolution that is an arrow \[ u:P\rightarrow C \] of \(\omega\boldsymbol{Cat}\), such that \(P\) is a free \(\omega\)-category and \(u\) abides by some properties of formal similarities with trivial fibrations of topological spaces.
Every free \(\omega\)-category \(P\) is to be linearized to a chain complex \(\lambda(P)\).
Given two polygraphic resolutions \(P\rightarrow C\) and \(P^{\prime}\rightarrow C\) of the same free \(\omega\)-category, the homology groups of the chain complexes \(\lambda(P)\) and \(\lambda(P^{\prime})\) coincide.

Definition. Let \(C\) be an \(\omega\)-category and \(k\in\mathbb{N}\). The \(k\)-th polygraphic homology group \(H_{k}^{\mathrm{pol}}(C)\) of \(C\) is the \(k\)-th homology group of \(\lambda(P)\) for any polygraphic resolution \(P\rightarrow C\).
The principal objective in this paper is to establish the following theorem.
Theorem. Let \(C\) be an \(\omega\)-category. For every \(k\in\mathbb{N}\), we have \[ H_{k}(C)\simeq H_{k}^{\mathrm{pol}}(C). \]
The restriction of the above theorem to the case of monoids is precisely Corollary 3 of [Y. Lafont and F. Métayer, J. Pure Appl. Algebra 213, No. 6, 947–968 (2009; Zbl 1169.18002), §3.4], but the author’s novelty lies in his more conceptual proof than theirs. Besides, the actural result in this paper (Theorem 8.3) is more precise than the above theorem in that
The homology of an \(\omega\)-category, whether polygraphic or of the nerve, is considered as a chain complex up to quasi-isomorphism, but not only a sequence of abelian groups.
It is established that the polygraphic homology and homology of the nerve of a small category are naturally isomorphic with the natural isomorphism explicitly constructed.
18N30 Strict omega-categories, computads, polygraphs
18G90 Other (co)homology theories (category-theoretic aspects)
Full Text: DOI HAL
[1] Ara, D., A Quillen theorem B for strict ∞- categories, J. Lond. Math. Soc., 100, 470-497 (2019) · Zbl 1430.18021
[2] D. Ara, A. Burroni, Y. Guiraud, P. Malbos, F. Métayer, S. Mimram, Polygraphs: From Rewriting to Higher Categories, In preparation.
[3] Ara, D.; Lucas, M., The folk model category structure on strict ω- categories is monoidal, Theory Appl. Categ., 35, 742-808 (2020) · Zbl 1443.18008
[4] Ara, D.; Maltsiniotis, G., Vers une structure de catégorie de modèles à la Thomason sur la catégorie des n- catégories strictes, Adv. Math., 259, 557-654 (2014) · Zbl 1308.18004
[5] Ara, D.; Maltsiniotis, G., Un théorème A de Quillen pour les ∞- catégories strictes, I: la preuve simpliciale, Adv. Math., 328, 446-500 (2018) · Zbl 1390.18011
[6] Ara, D.; Maltsiniotis, G., Comparaison des nerfs n- catégoriques (2020), preprint
[7] Ara, D.; Maltsiniotis, G., Joint et tranches pour les ∞- catégories strictes, Mém. Soc. Math. Fr., 165 (2020)
[8] Ara, D.; Maltsiniotis, G., Un théorème A de Quillen pour les ∞- catégories strictes, II: la preuve ∞-catégorique, Higher Struct., 4, 284-388 (2020) · Zbl 07173321
[9] Barwick, C.; Kan, D. M., A characterization of simplicial localization functors and a discussion of DK equivalences, Indag. Math., 23, 69-79 (2012) · Zbl 1244.18016
[10] Bourn, D., Another denormalization theorem for Abelian chain complexes, J. Pure Appl. Algebra, 66, 229-249 (1990) · Zbl 0716.18003
[11] Dwyer, W. G.; Spalinski, J., Homotopy theories and model categories, (Handbook of Algebraic Topology (1995), ScienceDirect), 73-126 · Zbl 0869.55018
[12] Gabriel, P.; Zisman, M., Calculus of Fractions and Homotopy Theory (1967), Springer · Zbl 0186.56802
[13] Gagna, A., Strict n-categories and augmented directed complexes model homotopy types, Adv. Math., 331, 542-564 (2018) · Zbl 1395.18008
[14] Goerss, P. G.; Jardine, J. F., Simplicial Homotopy Theory (2009), Birkhäuser
[15] González, B. R., A derivability criterion based on the existence of adjunctions (2012), preprint
[16] Guetta, L., Polygraphs and discrete Conduché ω- functors, Higher Struct., 4, 134-166 (2020) · Zbl 1467.18044
[17] Guetta, L., Homology of strict ω- categories (2021), Université de Paris, Ph.D. thesis
[18] Hovey, M., Model Categories (2007), American Mathematical Society · Zbl 1129.18004
[19] Lafont, Y.; Métayer, F., Polygraphic resolutions and homology of monoids, J. Pure Appl. Algebra, 213, 947-968 (2009) · Zbl 1169.18002
[20] Lafont, Y.; Métayer, F.; Worytkiewicz, K., A folk model structure on omega-cat, Adv. Math., 224, 1183-1231 (2010) · Zbl 1236.18017
[21] Lucas, M., Cubical categories for homotopy and rewriting (2017), Université Paris Diderot, Ph.D. thesis
[22] Lurie, J., Higher Topos Theory (2009), Princeton University Press · Zbl 1175.18001
[23] Makkai, M., The word problem for computads (2005), Available on the author’s web page
[24] Maltsiniotis, G., La Théorie de l’Homotopie de Grothendieck (2005), Société Mathématique de France · Zbl 1104.18005
[25] Métayer, F., Resolutions by polygraphs, Theory Appl. Categ., 11, 148-184 (2003) · Zbl 1020.18001
[26] Métayer, F., Cofibrant objects among higher-dimensional categories, Homol. Homotopy Appl., 10, 181-203 (2008) · Zbl 1143.18007
[27] Quillen, D. G., Homotopical Algebra (1967), Springer · Zbl 0168.20903
[28] Quillen, D. G., Higher algebraic k-theory: I, (Higher K- theories (1973), Springer), 85-147 · Zbl 0292.18004
[29] Steiner, R., Omega-categories and chain complexes, Homol. Homotopy Appl., 6, 175-200 (2004) · Zbl 1071.18005
[30] Street, R., The algebra of oriented simplexes, J. Pure Appl. Algebra, 49, 283-335 (1987) · Zbl 0661.18005
[31] Thomason, R. W., Homotopy colimits in the category of small categories, Math. Proc. Camb. Univ. Press, 85, 91-109 (1979) · Zbl 0392.18001
[32] Thomason, R. W., Cat as a closed model category, Cah. Topol. Géom. Différ. Catég., 21, 305-324 (1980) · Zbl 0473.18012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.