×

Periodic tilings and auxetic deployments. (English) Zbl 07357398

Summary: We investigate geometric characteristics of a specific planar periodic framework with three degrees of freedom. While several avatars of this structural design have been considered in materials science under the name of chiral or missing rib models, all previous studies have addressed only local properties and limited deployment scenarios. We describe the global configuration space of the framework and emphasize the geometric underpinnings of auxetic deformations. Analogous structures may be considered in arbitrary dimension.

MSC:

74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wojciechowski, KW. Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 1989; 137(1,2): 60-64.
[2] Lakes, R. Deformation mechanisms in negative Poisson’s ratio materials: Structural aspects. J Mater Sci 1991; 26: 2287.
[3] Prall, D, Lakes, RS. Properties of a chiral honeycomb with a Poisson’s ratio of \(- 1\). Int J Mech Sci 1997; 39: 305-314. · Zbl 0894.73018
[4] Sigmund, O, Torquato, S, Askay, IA. On the design of 1-3 piezocomposites using topology optimization. J Mater Res 1998; 13: 1038-1048.
[5] Gaspar, N, Ren, XJ, Smith, CW, et al. Novel honeycombs with auxetic behaviour. Acta Mater 2005; 53: 2439-2445.
[6] Alderson, A, Alderson, KL, Attard, D, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 2010; 70: 1042-1048.
[7] Rossiter, J, Takashima, K, Scarpa, F, et al. Shape memory polymer hexachiral auxetic structures with tunable stiffness. Smart Mater Struct 2014; 23: 045007.
[8] Frederickson, GN. Hinged dissections: Swinging & twisting. Cambridge: Cambridge University Press, 2002. · Zbl 1130.00003
[9] Mitschke, H, Schwerdtfeger, J, Schury, F, et al. Finding auxetic frameworks in periodic tessellations. Adv Mater 2011; 23: 2669-2674.
[10] Mitschke, H, Robins, V, Mecke, K, et al. Finite auxetic deformations of plane tessellations. Proc R Soc London, Ser A 2013; 469: 20120465. · Zbl 1371.74115
[11] Mitschke, H, Schury, F, Mecke, K, et al. Geometry: The leading parameter for the Poisson’s ratio of bending-dominated cellular solids. Int J Solids Struct 2016; 100-101: 1-10.
[12] Mousanezhad, D, Haghpanah, B, Ghosh, R, et al. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach. Theor Appl Mech Lett 2016; 6: 81-96.
[13] Jiang, Y, Li, Y. 3D printed chiral cellular solids with amplified auxetic effects due to elevated internal rotation. Adv Eng Mater 2017; 19: 1600609.
[14] Idezak, E, Strek, T. Minimization of Poisson’s ratio in anti-tetra-chiral two-phase structure. IOP Conf Ser: Mater Sci Eng 2017; 248: 012006.
[15] Lim, TC. Analogies across auxetic models based on deformation mechanism. Phys Status Solidi RRL 2017; 11(6): 1600440.
[16] Bacigalupo, A, Gnecco, G, Lepidi, M, et al. Optimal design of low-frequency band gaps in anti-tetrachiral lattice meta-materials. Composites, Part B 2017; 115: 341-359.
[17] Barchiesi, E, Spagnuolo, M, Placidi, L. Mechanical metamaterials: A state of the art. Math Mech Solids 2019; 24(1): 212-234. · Zbl 1425.74036
[18] Wu, W, Qi, D, Liao, H, et al. Deformation mechanism of innovative 3D chiral metamaterials. Sci Rep 2018; 8: 12575.
[19] Wu, W, Hu, W, Qian, G, et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater Des 2019; 180: 107950.
[20] Farrugia, PS, Gatt, R, Lonardelli, EZ, et al. Different deformation mechanisms leading to auxetic behavior exhibited by missing rib square grid structures. Phys Status Solidi B 2019; 256: 1800186.
[21] Borcea, CS, Streinu, I. Periodic frameworks and flexibility. Proc R Soc London, Ser A 2010; 466: 2633-2649. · Zbl 1211.82053
[22] Borcea, CS, Streinu, I. Liftings and stresses for planar periodic frameworks. Discrete Comput Geom 2015; 53: 747-782. · Zbl 1319.52030
[23] Borcea, CS, Streinu, I. Geometric auxetics. Proc R Soc London, Ser A 2015; 471: 20150033. · Zbl 1371.82115
[24] Borcea, CS, Streinu, I. Periodic auxetics: Structure and design. Q J Mech Appl Math 2018; 71(2): 125-138. · Zbl 1459.74123
[25] Borcea, CS, Streinu, I, Tanigawa, S. Periodic body-and-bar frameworks. SIAM J Discrete Math 2015; 29(1): 93-112. · Zbl 1329.52020
[26] Müller, O, Sánchez, M. An invitation to Lorentzian geometry. Jahresber Dtsch Math-Ver 2014; 115: 153-183. · Zbl 1302.53076
[27] Borcea, CS, Streinu, I. Kinematics of expansive planar periodic mechanisms. In: Lenarčič, J, Khatib, O (eds.) Advances in robot kinematics. Cham: Springer, 2014, 395-407.
[28] Goodwin, AL. Rigid unit modes and intrinsic flexibility of linearly bridged framework structures. Phys Rev B 2006; 74: 132302-132312.
[29] Lakes, R. Foam structures with a negative Poisson’s ratio. Science 1987: 235; 1038-1040.
[30] Greaves, GN, Greer, AL, Lakes, R, et al. Poisson’s ratio and modern materials. Nat Mater 2011; 10: 823-837.
[31] Lakes, RS. Negative-Poisson’s-ratio materials: Auxetic solids. Annu Rev Mater Res 2017; 47: 63-81.
[32] Bertoldi, K, Vitelli, V, Christensen, J, et al. Flexible mechanical metamaterials. Nat Rev Mater 2017; 2: 17066.
[33] Sunada, T. Topological crystallography. Berlin: Springer, 2013. · Zbl 1271.55001
[34] Goodwin, AL, Keen, DA, Tucker, MG, et al. Argentophilicity-dependent colossal thermal expansion in extended Prussian blue analogues. J Am Chem Soc 2008; 130: 9660-9661.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.