×

Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. (English) Zbl 07357426

Summary: Mechanical behavior of materials with granular microstructures is confounded by unique features of their grain-scale mechano-morphology, such as the tension-compression asymmetry of grain interactions and irregular grain structure. Continuum models, necessary for the macro-scale description of these materials, must link to the grain-scale behavior to describe the consequences of this mechano-morphology. Here, we consider the damage behavior of these materials based upon purely mechanical concepts utilizing energy and variational approach. Granular micromechanics is accounted for through Piola’s ansatz and objective kinematic descriptors obtained for grain-pair relative displacement in granular materials undergoing finite deformations. Karush-Kuhn-Tucker (KKT)-type conditions that provide the evolution equations for grain-pair damage and Euler-Lagrange equations for evolution of grain-pair relative displacement are derived based upon a non-standard (hemivariational) variational approach. The model applicability is illustrated for particular form of grain-pair elastic energy and dissipation functionals through numerical examples. Results show interesting damage-induced anisotropy evolution including the emergence of a type of chiral behavior and formation of finite localization zones.

MSC:

74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Misra, A, Poorsolhjouy, P. Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math Mech Solids 2020; 25(10): 1778-1803. · Zbl 07259257
[2] Misra, A, Singh, V. Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mech Thermodyn 2015; 27(4-5): 787. · Zbl 1341.74048
[3] Yang, Y, Misra, A. Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int J Solids Struct 2012; 49(18): 2500-2514.
[4] Amor, H, Marigo, JJ, Maurini, C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J Mech Phys Solids 2009; 57(8): 1209-1229. · Zbl 1426.74257
[5] Battista, A, Rosa, L, dell’Erba, R, et al. Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Math Mech Solids 2017; 22(11): 2120-2134. · Zbl 1395.74005
[6] Contrafatto, L, Cuomo, M, Fazio, F. An enriched finite element for crack opening and rebar slip in reinforced concrete members. Int J Fracture 2012; 178(1-2): 33-50.
[7] Del Piero, G, Lancioni, G, March, R. A variational model for fracture mechanics: Numerical experiments. J Mech Phys Solids 2007; 55(12): 2513-2537. · Zbl 1166.74413
[8] Francfort, G, Marigo, JJ. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 1998; 46(8): 1319-1342. · Zbl 0966.74060
[9] Freddi, F, Royer-Carfagni, G. Variational fracture mechanics to model compressive splitting of masonry-like materials. Ann Solid Struct Mech 2011; 2(2): 57-67.
[10] Lancioni, G, Royer-Carfagni, G. The variational approach to fracture mechanics. A practical application to the French Panthéon in Paris. J Elasticity 2009; 95(1): 1-30. · Zbl 1166.74029
[11] Lancioni, G . Numerical results from different variational theories of fracture. In: Giornata IGF Forni di Sopra (UD) 2010. · Zbl 1243.65122
[12] Li, T, Marigo, JJ, Guilbaud, D, et al. Variational approach to dynamic brittle fracture via gradient damage models. Appl Mech Mater 2015; 784: 334-341.
[13] Li, T, Marigo, JJ, Guilbaud, D, et al. Gradient damage modeling of brittle fracture in an explicit dynamics context. Int J Numer Meth Eng 2016; 108(11): 1381-1405.
[14] Marigo, JJ, Maurini, C, Pham, K. An overview of the modelling of fracture by gradient damage models. Meccanica 2016; 51: 3107-3128. · Zbl 1374.74109
[15] Misra, A. Effect of asperity damage on shear behavior of single fracture. Eng Fracture Mech 2002; 69(17): 1997-2014.
[16] Pham, K, Amor, H, Marigo, JJ, et al. Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 2011; 20(4): 618-652.
[17] Abali, B, Müller, W, dell’Isola, F. Theory and computation of higher gradient elasticity theories based on action principles. Arch Appl Mech 2017; 87: 1495-1510.
[18] Ambati, M, Gerasimov, T, Lorenzis, L. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computat Mech 2015; 55(2): 383-405. · Zbl 1398.74270
[19] Bourdin, B, Francfort, G, Marigo, JJ. Numerical experiments in revisited brittle fracture. J Mech Phys Solids 2000; 48(4): 797-826. · Zbl 0995.74057
[20] Bourdin, B, Francfort, G, Marigo, JJ. The variational approach to fracture. J Elasticity 2008; 91(1): 5-148. · Zbl 1176.74018
[21] Sicsic, P, Marigo, JJ. From gradient damage laws to Griffith’s theory of crack propagation. J Elasticity 2013; 113: 55-74. · Zbl 1274.74436
[22] Contrafatto, L, Cuomo, M, Greco, L. Meso-scale simulation of concrete multiaxial behaviour. Eur J Environ Civil Eng 2017; 21(7-8): 896-911.
[23] Harrison, P, Anderson, D, Alvarez, M, et al. Measuring and modelling the in-plane bending stiffness and wrinkling behaviour of engineering fabrics. In: EUROMECH Colloquium 569: Multiscale Modeling of Fibrous and Textile Materials, Chatenay-Malabry, 2016.
[24] Misra, A, Singh, V. Micromechanical model for viscoelastic materials undergoing damage. Continuum Mech Thermodyn 2013; 25: 343-358. · Zbl 1343.74039
[25] Alibert, JJ, Della Corte, A, Giorgio, I, et al. Extensional elastica in large deformation as \(\gamma \)-limit of a discrete 1D mechanical system. Z angew Math Phys 2017; 68(2): 42. · Zbl 1365.74144
[26] Ambati, M, Gerasimov, T, De Lorenzis, L. Phase-field modeling of ductile fracture. Computat Mech 2015; 55(5): 1017-1040. · Zbl 1329.74018
[27] D’Annibale, F, Rosi, G, Luongo, A. Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 2015; 50(3): 825-839. · Zbl 1357.70026
[28] Miehe, C, Hofacker, M, Welschinger, F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Meth Appl Mech Eng 2010; 199(45): 2765-2778. · Zbl 1231.74022
[29] Misra, A, Luca, P, Turco, E. Variational methods for discrete models of granular materials. In: Encylopedia of Continuum Mechanics Berlin: Springer-Verlag, 2020.
[30] Turco, E, dell’Isola, F, Cazzani, A, et al. Hencky-type discrete model for pantographic structures: Numerical comparison with second gradient continuum models. Z angew Math Phys 2016; 67: 85. · Zbl 1432.74158
[31] Turco, E, Golaszewski, M, Cazzani, A, et al. Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model. Mech Res Commun 2016; 76: 51-56.
[32] Turco, E, Golaszewski, M, Giorgio, I, et al. Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations. Composites B: Eng 2017; 118: 1-14.
[33] Poorsolhjouy, P, Misra, A. Effect of intermediate principal stress and loading-path on failure of cementitious materials using granular micromechanics. Int J Solids Struct 2017; 108: 139-152.
[34] Scerrato, D, Giorgio, I, Della Corte, A, et al. A micro-structural model for dissipation phenomena in the concrete. Int J Numer Analyt Meth Geomech 2015; 39(18): 2037-2052.
[35] Scerrato, D, Giorgio, I, Della Corte, A, et al. Towards the design of an enriched concrete with enhanced dissipation performances. Cement Concrete Res 2016; 84: 48-61.
[36] Chiaia, B, Kumpyak, O, Placidi, L, et al. Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng Struct 2015; 96: 88-99.
[37] Placidi, L. A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech Thermodyn 2015; 27(4-5): 623. · Zbl 1341.74016
[38] Placidi, L, Barchiesi, E, Misra, A. A strain gradient variational approach to damage: A comparison with damage gradient models and numerical results. Math Mech Complex Syst 2018; 6(2): 77-100. · Zbl 1452.74019
[39] Placidi, L. A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mech Thermodyn 2016; 28(1-2): 119-137. · Zbl 1348.74062
[40] Placidi, L, Misra, A, Barchiesi, E. Two-dimensional strain gradient damage modeling: A variational approach. Z angew Math Phys 2018; 69(3): 56. · Zbl 1393.74168
[41] Placidi, L, Misra, A, Barchiesi, E. Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech Thermodyn 2019; 31(4): 1143-1163.
[42] Placidi, L, Barchiesi, E. Energy approach to brittle fracture in strain-gradient modelling. Proc R Soc A: Math Phys Eng Sci 2018; 474(2210): 20170878. · Zbl 1402.74094
[43] Andreaus, U, dell’Isola, F, Giorgio, I, et al. Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int J Eng Sci 2016; 108: 34-50. · Zbl 1423.74089
[44] Cuomo, M, dell’Isola, F, Greco, L, et al. First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities. Composites B: Eng 2016; 115: 423-448.
[45] Cuomo, M, dell’Isola, F, Greco, L. Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z angew Math Phys 2016; 67(3): 1-23. · Zbl 1442.74056
[46] dell’Isola, F, Madeo, A, Seppecher, P. Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. Int J Solids Struct 2009; 46(17): 3150-3164. · Zbl 1167.74393
[47] dell’Isola, F, Lekszycki, T, Pawlikowski, M, et al. Designing a light fabric metamaterial being highly macroscopically tough under directional extension: First experimental evidence. Z angew Math Phys 2015; 66: 3473-3498. · Zbl 1395.74002
[48] dell’Isola, F, Giorgio, I, Andreaus, U. Elastic pantographic 2D lattices: A numerical analysis on static response and wave propagation. Proc Estonian Acad Sci 2015; 64: 219-225.
[49] dell’Isola, F, Giorgio, I, Pawlikowski, M, et al. Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc R Soc A 2016; 472(2185): 20150790.
[50] dell’Isola, F, Della Corte, A, Giorgio, I, et al. Pantographic 2D sheets: Discussion of some numerical investigations and potential applications. Int J Non-Lin Mech 2016; 80: 200-208.
[51] Eremeyev, VA, dell’Isola, F, Boutin, C, et al. Linear pantographic sheets: Existence and uniqueness of weak solutions. J Elasticity 2018; 132: 175-196. · Zbl 1398.74011
[52] Ganzosch, G, dell’Isola, F, Turco, E, et al. Shearing tests applied to pantographic structures. Acta Polytechnica CTU Proc 2016; 7: 1-6.
[53] Giorgio, I, Della Corte, A, dell’Isola, F, et al. Buckling modes in pantographic lattices. C R Mecanique 2016; 344(7): 487-501.
[54] Sciarra, G, dell’Isola, F, Coussy, O. Second gradient poromechanics. Int J Solids Struct 2007; 44(20): 6607-6629. · Zbl 1166.74341
[55] Spagnuolo, M, Barcz, K, Pfaff, A, et al. Qualitative pivot damage analysis in aluminum printed pantographic sheets: Numerics and experiments. Mech Res Commun 2017; 83: 47-52.
[56] Steigmann, D, dell’Isola, F. Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mechanica Sinica 2015; 31(3): 373-382. · Zbl 1346.74128
[57] Turco, E, dell’Isola, F, Rizzi, N, et al. Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence. Mech Res Commun 2016; 76: 86-90.
[58] Misra, A, Nejadsadeghi, N, De Angelo, M, et al. Chiral metamaterial predicted by granular micromechanics: Verified with 1D example synthesized using additive manufacturing. Continuum Mech Thermodyn 2020; 32: 1497-1513.
[59] Giorgio, I, De Angelo, M, Turco, E, et al. A Biot-Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Continuum Mech Thermodyn 2020; 32: 1357-1369.
[60] Nejadsadeghi, N, Misra, A. Extended granular micromechanics approach: A micromorphic theory of degree \(n\). Math Mech Solids 2020; 25(2): 407-429. · Zbl 1446.74104
[61] Alibert, JJ, Seppecher, P, dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 2003; 8(1): 51-73. · Zbl 1039.74028
[62] Seppecher, P, Alibert, JJ, dell’Isola, F. Linear elastic trusses leading to continua with exotic mechanical interactions. J Phys: Conf Ser 2011; 319: 012018.
[63] Giorgio, I, dell’Isola, F, Misra, A. Chirality in 2D Cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics. Int J Solids Struct 2020; 202: 28-38.
[64] Poorsolhjouy, P, Misra, A. Granular micromechanics based continuum model for grain rotations and grain rotation waves. J Mech Phys Solids 2019; 129: 244-260.
[65] Chang, CS, Gao, J. Second-gradient constitutive theory for granular material with random packing structure. Int J Solids Struct 1995; 32(16): 2279-2293. · Zbl 0869.73004
[66] Triantafyllidis, N, Bardenhagen, S. On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J Elasticity 1993; 33(3): 259-293. · Zbl 0819.73008
[67] Auffray, N, Dirrenberger, J, Rosi, G. A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int J Solids Struct 2015; 69: 195-206.
[68] Moerman, KM, Simms, CK, Nagel, T. Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. J Mech Behavior Biomed Mater 2016; 56: 218-228.
[69] Ozyhar, T, Hering, S, Niemz, P. Viscoelastic characterization of wood: Time dependence of the orthotropic compliance in tension and compression. J Rheology 2013; 57(2): 699-717.
[70] Násouglo, KE, Rodríguez-Martínez, JA, Vaz-Romero, A, et al. The combined effect of plastic orthotropy and tension-compression asymmetry on the development of necking instabilities in flat tensile specimens subjected to dynamic loading. Int J Solids Struct 2019; 159: 272-288.
[71] Wang, C, Qian, X. Heaviside projection based aggregation in stress constrained topology optimization. Int J Numer Meth Eng 2018; 115(7): 849-871.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.