×

Polar factorization and monotone rearrangement of vector-valued functions. (English) Zbl 0738.46011

Author’s abstract: Given a probability space \((X,\mu)\) and a bounded domain \(\Omega\) in \(\mathbb{R}^ d\) equipped with the Lebesgue measure \(|\cdot|\) (normalized so that \(|\Omega|=1\)), it is shown (under additional technical assumptions on \(X\) and \(\Omega\)) that for every vector-valued function \(u\in L^ p(X,\mu;\mathbb{R}^ d)\) there is a unique “polar factorization” \(u=\nabla\psi\circ s\), where \(\psi\) is a convex function defined on \(\Omega\) and \(s\) is a measure-preserving mapping from \((X,\mu)\) into \((\Omega,|\cdot|)\), provided that \(u\) is nondegenerate, in the sense that \(\mu(u^{-1}(E))=0\) for each Lebesgue negligible subset \(E\) of \(\mathbb{R}^ d\).
Through this result, the concepts of polar factorization of real matrices, Helmholtz decomposition of vector fields, and nondecreasing rearrangements of vector-valued functions are unified. The Monge-Ampère equation is involved in the polar factorization and the proof relies on the study of an appropriate “Monge-Kantorovich” problem.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E40 Spaces of vector- and operator-valued functions
28A99 Classical measure theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] , and , Manifolds, Tensor Analysis, and Applications, Reading, MA, Addison-Wesley, 1983.
[2] , and , On optimization problems with prescribed rearrangements, preprint.
[3] Le problème géometrique de déblais et des remblais, Mémoriale de l’Académie des Sciences Mathématiques, Fascicule XXVII, Paris, 1928.
[4] Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, 1979. · Zbl 0452.90093
[5] Isoperimetric Inequalities, Pitman, London, 1980. · Zbl 0454.52005
[6] Brenier, C.R. Acad. Sci. Paris 305 pp 805– (1987)
[7] A combinatorial algorithm for the Euler equation of incompressible flows, 8th International Conf. on Computing Methods, Versailles, 1987.
[8] Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
[9] Caffarelli, Comm. Pure Appl. Math. 37 pp 369– (1984)
[10] Cullen, J. Atmos. Sci. 41 pp 1477– (1984)
[11] Cullen, QJR Meteorol. Soc. 113 pp 735– (1987)
[12] and , Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, Paris, 1985.
[13] and , Analyse Convexe et Problèmes Varitionnels, Dunod, Paris. 1974.
[14] , and , Inequalities, Cambridge Univ. Press, 1952.
[15] Kantorovich, Dokl. Akad. Nauk SSSR 37 pp 227– (1942)
[16] Knott, J. Opt. Th. Appl. 43 pp 39– (1984)
[17] Mémoire sur la théorie des déblais et de remblais, Mémoires de l’Académic des Sciences. 1781.
[18] Inégalités Isopérimétriques et Applications en Physique, Hermann, Paris, 1985.
[19] Rachev, Th. Prob. Appl. 49 pp 647– (1985)
[20] Recent results in the theory of probability metrics, to appear.
[21] Real Analysis, MacMillan, New York, 1963.
[22] Ryff, Trans. AMS 117 pp 92– (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.