On genus and cancellation in homotopy. (English) Zbl 0744.55004

The author proves the following Theorem. Suppose given \(\alpha_ i,\beta_ j\in\pi_{4n-1}(S^{2n})\), \(1\leq i\leq H\), \(1\leq j\leq H\), and assume that they are elements of infinite order for \(i\leq m\), \(j\leq m'\), and elements of finite order for \(i > m\), \(j > m'\). Denote by \(C_{\alpha_ i}\), \(C_{\beta_ j}\) the corresponding mapping cones. Then \(\bigvee^ H_{i=1}C_{\alpha_ i}\simeq \bigvee^ H_{j=1}C_{\beta_ j}\) if and only if: (i) \(m=m'\); (ii) \(C_{\alpha_ i}\simeq C_{\sigma(i)}\), \(i=1,\dots,m\), for some permutation \(\sigma\) of \(\{1,2,\dots,m\}\); (iii) \(\bigvee^ H_{i=m+1}C_{\alpha_ i}\simeq\bigvee^ H_{j=m+1}C_{\beta_ j}\).
Reviewer: M.Mimura (Okayama)


55P15 Classification of homotopy type
Full Text: DOI


[1] Adams, J. F., On the non-existence of elements of Hopf invariant one, Ann. of Math., 72, 20-104 (1960) · Zbl 0096.17404 · doi:10.2307/1970147
[2] Bousfield, A. K.; Kan, D. M., Homotopy Limits, Completions and Localisations (1972), Berlin: Springer-Verlag, Berlin · Zbl 0259.55004
[3] Freyd, P., Stable Homotopy II, AMS Proc. Symp. Pure Math., 18, 161-183 (1970) · Zbl 0222.55020
[4] Hilton, P. J., Homotopy Theory and Duality (1965), London: Gordon and Breach, London
[5] Hilton, P. J., The Grothendieck group of compact polyhedra, Fund. Math., 61, 199-214 (1967) · Zbl 0171.44202
[6] Hilton, P. J.; Mislin, G.; Roitberg, J., Localisation of Nilpotent Groups and Spaces (1975), Amsterdam: North-Holland, Amsterdam · Zbl 0323.55016
[7] Hilton, P. J.; Pfenniger, M. R., Nilpotente Gruppen und nilpotente Räume (1984), Berlin: Springer-Verlag, Berlin · Zbl 0549.55001
[8] Molnar, E., Relation between wedge cancellation and localisation for complexes with two cells, J. Pure Appl. Algebra, 3, 77-81 (1972)
[9] Whitehead, G. W., Elements of Homotopy Theory (1978), New York: Springer, New York · Zbl 0406.55001
[10] Wilkerson, C., Genus and cancellation, Topology, 14, 29-36 (1975) · Zbl 0315.55016 · doi:10.1016/0040-9383(75)90032-4
[11] Zabrodsky, A., On the genus of finite CW H-spaces, Comment. Math. Helv., 49, 48-64 (1974) · Zbl 0278.55010 · doi:10.1007/BF02566718
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.