×

Optimal convergence analysis of the energy-preserving immersed weak Galerkin method for second-order hyperbolic interface problems in inhomogeneous media. (English) Zbl 1524.65525

Summary: This article reports our explorations for solving second-order hyperbolic interface problems by immersed weak Galerkin (IWG) method on interface independent meshes. The method presented here uses IWG functions for the discretization in spatial variable. The study includes the Newmark algorithm which has been used extensively in applications. The stability analysis based on the energy method is presented for semi-discrete and fully-discrete schemes under some conditions on parameters of the Newmark algorithm. In this work, we carried out a convergence analysis and obtained optimal a priori error estimates in both energy and \(L^2\) norms for the semi-discrete and fully-discrete schemes under piecewise \(H^2\) regularity assumption in space and some conditions on parameters of the Newmark algorithm. We demonstrate that the maximal error in the \(L^2\)-norm error over a finite time interval converges optimally as \(O(h^2+\tau^{r(\gamma)})\), where \(r(\gamma)=1\) if \(\gamma\neq 1/2\), \(r(1/2)=2\), \(h\) and \(\tau\) are the mesh size and the time step, respectively. Numerical examples are provided to confirm theoretical findings and illustrate the efficiency of the method for standing and traveling waves.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbaszadeh, M.; Dehghan, M., Meshless local numerical procedure based on interpolating moving least squares approximation and exponential time differencing fourth-order Runge-Kutta (ETDRK_4) for solving parabolic interface problems, Eng. Comput. (2020), in press
[2] Al-Droubi, A.; Renardy, M., Energy method for a parabolic-hyperbolic interface problem arising in electromagnetism, Z. Angew. Math. Phys., 39, 6, 931-936 (1988) · Zbl 0726.35087
[3] Adjerid, S.; Lin, T., Higher-order immersed discontinuous Galerkin methods, Int. J. Inf. Syst. Sci., 3, 4, 555-568 (2007) · Zbl 1124.65069
[4] Adjerid, S.; Lin, T., A p-th degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math., 59, 6, 1303-1321 (2009) · Zbl 1177.65118
[5] Adjerid, S.; Lin, T.; Zhuang, Q., Error estimates for an immersed finite element method for second order hyperbolic equations in inhomogeneous media, J. Sci. Comput., 84, 2, 25 (2020) · Zbl 1452.65220
[6] Adjerid, S.; Moon, K., An immersed discontinuous Galerkin method for acoustic wave propagation in inhomogeneous media, SIAM J. Sci. Comput., 41, 1, A139-A162 (2019) · Zbl 1407.65169
[7] Bramble, James H.; King, J. Thomas, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math., 6, 2, 109-138 (1996) · Zbl 0868.65081
[8] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 283-300 (1987) · Zbl 0629.65118
[9] Babuska, I.; Osborn, J. E., Can a finite element method perform arbitrarily badly?, Math. Comput., 69, 230, 443-462 (2000) · Zbl 0940.65086
[10] Cao, W.; Zhang, X.; Zhang, Z.; Zou, Q., Superconvergence of immersed finite volume methods for one-dimensional interface problems, J. Sci. Comput., 73, 2-3, 543-565 (2017) · Zbl 1384.65045
[11] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79, 2, 175-202 (1998) · Zbl 0909.65085
[12] Chu, C.-C.; Graham, I. G.; Hou, T.-Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput., 79, 272, 1915-1955 (2010) · Zbl 1202.65154
[13] Dehghan, M., On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer. Methods Partial Differ. Equ., 21, 1, 24-40 (2005) · Zbl 1059.65072
[14] Dehghan, M.; Abbaszadeh, M., Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems, Comput. Methods Appl. Mech. Eng., 238, 775-803 (2018) · Zbl 1439.82015
[15] Deka, B.; Sinha, R. K., Finite element methods for second order linear hyperbolic interface problems, Appl. Math. Comput., 218, 22, 10922-10933 (2012) · Zbl 1278.65151
[16] Deka, B.; Ahmed, T., Convergence of finite element method for linear second-order wave equations with discontinuous coefficients, Numer. Methods Partial Differ. Equ., 29, 5, 1522-1542 (2013) · Zbl 1274.65255
[17] Guo, R.; Lin, T.; Zhang, X., Nonconforming immersed finite element spaces for elliptic interface problems, Comput. Math. Appl., 75, 6, 2002-2016 (2018) · Zbl 1409.82015
[18] Guo, H.; Yang, X.; Zhang, Z., Superconvergence of partially penalized immersed finite element methods, IMA J. Numer. Anal., 38, 4, 2123-2144 (2018) · Zbl 1462.65187
[19] Guo, R.; Lin, T.; Zhuang, Q., Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems, Int. J. Numer. Anal. Model., 16, 4, 575-589 (2019) · Zbl 1427.65361
[20] Gharibi, Z.; Dehghan, M.; Abbaszadeh, M., Optimal error bound for immersed weak Galerkin finite element method for elliptic interface problems, J. Comput. Appl. Math. (2020), submitted for publication
[21] He, X.; Lin, T.; Lin, Y., Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differ. Equ., 24, 5, 1265-1300 (2008) · Zbl 1154.65090
[22] Hou, S.; Liu, X.-D., A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys., 202, 2, 411-445 (2005) · Zbl 1061.65123
[23] Hou, T. Y.; Li, Z.; Osher, S.; Zhao, H., A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys., 134, 2, 236-252 (1997) · Zbl 0888.76067
[24] Hou, S.; Wang, W.; Wang, L., Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces, J. Comput. Phys., 229, 19, 7162-7179 (2010) · Zbl 1197.65183
[25] He, X.; Lin, T.; Lin, Y., A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37, 7, 983-1002 (2014) · Zbl 1292.65126
[26] He, X.-M.; Lin, T.; Lin, Y., A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient, Commun. Comput. Phys., 6, 1, 185-202 (2009) · Zbl 1364.65225
[27] Kwak, D. Y.; Wee, K. T.; Chang, K. S., An analysis of a broken \(P_1\)-nonconforming finite element method for interface problems, SIAM J. Numer. Anal., 48, 6, 2117-2134 (2010) · Zbl 1222.65125
[28] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083
[29] Li, Z.; Ito, K., The Immersed Interface Method. Numerical Solutions of PDE Involving Interfaces and Irregular Domains, vol. 33 (2006), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1122.65096
[30] Li, Z., The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 3, 253-267 (1998) · Zbl 0936.65091
[31] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 1, 61-98 (2003) · Zbl 1055.65130
[32] Li, Z.; Lin, T.; Lin, Y.; Rogers, R. C., An immersed finite element space and its approximation capability, Numer. Methods Partial Differ. Equ., 20, 3, 338-367 (2004) · Zbl 1057.65085
[33] Lin, T.; Sheen, D.; Zhang, X., A nonconforming immersed finite element method for elliptic interface problems, J. Sci. Comput., 79, 1, 442-463 (2019) · Zbl 1415.65260
[34] Lin, T.; Yang, Q.; Zhang, X., Partially penalized immersed finite element methods for parabolic interface problems, Numer. Methods Partial Differ. Equ., 31, 6, 1925-1947 (2015) · Zbl 1334.65157
[35] Lin, T.; Lin, Y.; Zhang, X., Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53, 2, 1121-1144 (2015) · Zbl 1316.65104
[36] Lin, T.; Zhuang, Q., Optimal error bounds for partially penalized immersed finite element methods for parabolic interface problems, J. Comput. Appl. Math., 366, Article 112401 pp. (2020) · Zbl 1428.65045
[37] Zhu, L.; Zhang, Z.; Li, Z., The immersed finite volume element method for some interface problems with nonhomogeneous jump conditions, Int. J. Numer. Anal. Model., 13, 3, 368-382 (2016) · Zbl 1347.65163
[38] Mu, L.; Wang, J.; Wei, G.; Ye, X.; Zhao, S., Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250, 106-125 (2013) · Zbl 1349.65472
[39] Mu, L.; Wang, J.; Ye, X.; Zhao, S., A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325, 157-173 (2016) · Zbl 1380.65383
[40] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 1, 131-150 (1999) · Zbl 0955.74066
[41] Mu, L., A priori and a posterior error estimate of new weak Galerkin finite element methods for second order elliptic interface problems on polygonal meshes, J. Comput. Appl. Math., 362, 423-442 (2019) · Zbl 1422.65403
[42] Mu, L.; Zhang, X., An immersed weak Galerkin method for elliptic interface problems, J. Comput. Appl. Math., 362, 471-483 (2019) · Zbl 1422.65404
[43] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech. Div., 85, 67-94 (1959)
[44] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation (2008), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1153.65112
[45] Raviart, P. A.; Thomas, J.-M., Introduction à l’analyse numérique des équations aux dérivées partielles (1988), Masson: Masson Paris
[46] Song, L.; Zhao, S.; Liu, K., A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128, 65-80 (2018) · Zbl 1395.65145
[47] Taleei, A.; Dehghan, M., An efficient meshfree point collocation moving least squares method to solve the interface problems with nonhomogeneous jump conditions, Numer. Methods Partial Differ. Equ., 31, 1031-1053 (2015) · Zbl 1326.65165
[48] Taleei, A.; Dehghan, M., Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput. Methods Appl. Mech. Eng., 278, 479-498 (2014) · Zbl 1423.82009
[49] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121
[50] Chen, Y.; Hou, S.; Zhang, X., A bilinear partially penalized immersed finite element method for elliptic interface problems with multi-domain and triple-junction points, Res. Appl. Math., 8, Article 100100 pp. (2020) · Zbl 1467.65108
[51] An, N.; Chen, H. Z., A partially penalty immersed interface finite element method for anisotropic elliptic interface problems, Numer. Methods Partial Differ. Equ., 30, 1984-2028 (2014) · Zbl 1312.65179
[52] He, X.; Lin, T.; Lin, Y., A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37, 7, 983-1002 (2014) · Zbl 1292.65126
[53] Lin, T.; Yang, Q.; Zhang, X., A priori error estimates for some discontinuous Galerkin immersed finite element methods, J. Sci. Comput., 65, 3, 875-894 (2015) · Zbl 1331.65154
[54] Antiga, L.; Peiró, J.; Steinman, David A., From Image Data to Computational Domains, 123-175 (2009), Springer: Springer Milan, Milano
[55] Vallaghé, S.; Papadopoulo, T., A trilinear immersed finite element method for solving the electroencephalography forward problem, SIAM J. Sci. Comput., 32, 4, 2379-2394 (2010) · Zbl 1214.92046
[56] Dassi, F.; Perotto, S.; Formaggia, L.; Ruffo, P., Efficient geometric reconstruction of complex geological structures, Math. Comput. Simul., 106, 163-184 (2014) · Zbl 07312658
[57] Ye, X.; Zhang, S., A stabilizer free weak Galerkin finite element method on polytopal mesh. II, J. Comput. Appl. Math., 394, Article 113525 pp. (2021) · Zbl 1475.65205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.