Self-trapping of an electromagnetic field and bifurcation from the essential spectrum. (English) Zbl 0745.35044

(From author’s summary.) This paper has two main aims: (i) the representation of a mathematical description of a problem concerning the self-trapping of an electromagnetic wave, and (ii) the discussion of the relationship between this problem and the phenomenon of bifurcation from the essential spectrum. In the first part, we recall the basic physical quantities that are required and then we show how the problem can be reduced to a convenient mathematical form. In contrast to the approximate equations usually used in discussing self-trapping the solutions of our reduced problem yield exact solutions of Maxwell’s equations within the context of the constitutive hypotheses generally adopted in the optical regime with an intensity-dependent refractive index.
In the second part, the reduced problem is discussed from a variational point of view. By avoiding the usual approximations, we can clearly identify the precise physical significance of the parameters and norms used in this analysis. In particular, we observe that bifurcation from the essential spectrum with respect to the \(L^ 2\)-norm is equivalent to the occurrence of self-trapping at arbitrarily small intensities.


35Q60 PDEs in connection with optics and electromagnetic theory
35P05 General topics in linear spectral theory for PDEs
78A25 Electromagnetic theory (general)
35A15 Variational methods applied to PDEs
Full Text: DOI


[1] Akhmanov, R. V., Khokhlov, R. V. & Sukhorukov, A. P.: Self-focusing, self-defocusing and self-modulation of laser beams, in Laser Handbook, edited by F. T. Arecchi & E. O. Schulz Dubois, North-Holland, Amsterdam, 1972.
[2] Born, M. & Wolf, E.: Principles of Optics, fifth edition, Pergamon Press, Oxford, 1975.
[3] Brezis, H.: Analyse fonctionnelle, Masson, Paris, 1983.
[4] Chiao, R. Y., Garmire, E. & Townes, C. H.: Self-trapping of optical beams, Phys. Rev. Lett. 13 (1964), 479-482. · doi:10.1103/PhysRevLett.13.479
[5] Dunford, N. & Schwartz, J. T.: Linear Operators, Vol. 2, Interscience, New York, 1958. · Zbl 0084.10402
[6] Feynman, R. P., Leighton, R. B. & Sands, M.: Lectures on Physics, Vol. 2, Addison-Wesley, New York, 1964. · Zbl 0131.38703
[7] Hellwarth, R. W.: Third order susceptibilities of liquids and solids, Prog. Quantum Electr. 5 (1975), 1-68. · doi:10.1016/0079-6727(79)90002-8
[8] Kato, T.: Perturbation Theory for Linear Operators, Springer, Berlin, 1976. · Zbl 0342.47009
[9] Marburger, J. H.: Self-focusing: theory. Prog. Quant. Electr. 4 (1975), 35-100. · doi:10.1016/0079-6727(75)90003-8
[10] Marburger, J., Huff, L., Reichert, L. D. & Wagner, W. S.: Stationary self-trapping of optical beams in dense media with Lorentz local-field corrections, Phys. Rev. 184 (1969), 255-259. · doi:10.1103/PhysRev.184.255
[11] Pohl, D.: Vectorial theory of self-trapping light beams, Optics Comm. 2 (1970), 305-308. · doi:10.1016/0030-4018(70)90149-5
[12] Reintjes, J. F.: Nonlinear Optical Processes, in Encyclopedia of Physical Science and Technology, Vol. 9, Academic Press, New York, 1987.
[13] Shen, Y. R.: Self-focusing: experimental, Prog. Quant. Electr. 4 (1975), 1-34. · doi:10.1016/0079-6727(75)90002-6
[14] Smith, W. L.: Nonlinear refractive index, in Handbook of Laser Science and Technology, Vol. 3, editor M. J. Weber, CRC Press, Boca Raton, 1986.
[15] Snyder, A. W. & Love, J. D.: Optical Waveguide Theory, Chapman and Hall, London, 1983.
[16] Strauss, W.: The nonlinear Schrödinger equation, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, 1978. · Zbl 0395.35070
[17] Strauss, W.: Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162. · Zbl 0356.35028 · doi:10.1007/BF01626517
[18] Stuart, C. A.: Global properties of components of solutions of nonlinear second order ordinary differential equations on the half-line, Ann. Sc. Norm, Sup. Pisa 2 (1975), 265-286. · Zbl 0326.34034
[19] Stuart, C. A.: Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. 45 (1982), 169-192. · Zbl 0505.35010 · doi:10.1112/plms/s3-45.1.169
[20] Stuart, C. A.: Bifurcation from the essential spectrum, Proc. of Equal. Diff. 82, Lecture Notes in Math. No. 1017, Springer, Berlin, 1983. · Zbl 0527.35010
[21] Stuart, C. A.: Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Meth. Appl. Sci. 11 (1989), 525-542. · Zbl 0678.58013 · doi:10.1002/mma.1670110408
[22] Svelto, O.: Self-focusing, self-trapping and self-phase modulation of laser beams, in Progress in Optics, Vol. 12, editor E. Wolf, North Holland, Amsterdam, 1974.
[23] Talanov, V. S.: Self-focusing of wave beams in nonlinear media, 564-JETP Lett. 2 (1965), 138-141.
[24] Wang, C. C.: Mathematical Principles of Mechanics and Electromagnetism, Part B, Plenum Press, New York, 1979. · Zbl 0415.70002
[25] Stegeman, G. I., Ariyasu, J., Seaton, C. I., Shen, T-P., & Moloney, J. V.: Non-linear thin-film guided waves in non-Kerr media, Appl. Phys. Lett. 47 (1985), 1254-1256. · doi:10.1063/1.96295
[26] Stegeman, G. I., Wright, E. M., Seaton, C. T., Moloney, J. V., Shen, T. P., Maradudin, A. A., & Wallis, R. F.: Nonlinear slab-guided waves in non-Kerr-like media, IEEE, J. Quantum Elect. 22 (1986), 977-983. · doi:10.1109/JQE.1986.1073034
[27] Langbein, U., Lederer, F., Peschel. T., & Ponath, H.-E.: Nonlinear guided waves in saturable nonlinear media, Opt. Letter 10 (1985), 571-573. · doi:10.1364/OL.10.000571
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.