×

High-order compact difference schemes on wide computational stencils with a spectral-like accuracy. (English) Zbl 1524.76260

Summary: In this paper, we propose a generalized framework for the derivation of compact difference schemes for the approximation of an arbitrary order derivative. We formulate a methodology for calculating the approximation coefficients involving a large number of mesh points leading to very high-order formulas, e.g., 20th or 30th order. The main emphasis is on the first and second order derivative occurring in the Navier-Stokes equations governing fluid flow problems. Contrary to most studies on compact schemes in which the computational stencils employed in the discretization are narrow and consist of only a few mesh points \(K\), in the presented paper we consider wide stencils that in practice are limited only by the overall number of the nodes in a computational grid. We analyze the features of such wide stencil based schemes in physical and spectral space. It is shown that the solutions obtained applying the schemes of the same order but involving different number of the mesh points characterize significantly different accuracy. This is presented by direct comparisons of the analytically derived formula for the leading terms of the truncation errors as well as in practical simulations. The test cases include a second order ordinary differential equation with variable coefficients, 1D Burgers equation and three typical benchmark problems used in Computational Fluid Dynamics (CFD), i.e., inviscid vortex advection, convected Taylor-Green vortices and a double jet flow. The obtained results are compared with available analytical solutions and the solutions obtained with the help of a pseudo-spectral method. We found that very high-order compact schemes reach the spectral accuracy characterized by the error decrease proportional to \(\mathcal{O}(h^K)\). In some cases, they show even higher accuracy, and moreover, reaching the limit of the machine precision they are substantially more resistant to the round-off errors.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 811-845 (2013) · Zbl 1455.76007
[2] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T., Spectral Methods in Fluid Dynamics (1998), Springer
[3] Ames, W. F., Numerical Methods for Partial Differential Equations, 1-40 (1977), Academic Press · Zbl 0577.65077
[4] Richardson, L. F., The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a Masonry dam, Philos. Trans. R. Soc. Lond., Ser. A, Contain. Pap. Math. Phys. Character, 210, 307-357 (1911) · JFM 42.0873.02
[5] Richardson, L. F., Weather Prediction by Numerical Process, 4-15 (1922), Cambridge University Press · JFM 48.0629.07
[6] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 32-74 (1928) · JFM 54.0486.01
[7] Charney, J. G.; Fjørtoft, R.; von Neumann, J., Numerical integration of the barotropic vorticity equation, Tellus, 2, 237-254 (1950)
[8] Lax, P. D.; Wendroff, B., On the stability of difference schemes, Commun. Pure Appl. Math., 15, 363-371 (1962) · Zbl 0113.32301
[9] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial Value Problems (1967), John Wiley & Sons Inc. · Zbl 0155.47502
[10] Gates, W. L., On the truncation error, stability, and convergence of difference solutions of the barotropic vorticity equation, J. Meteorol., 16, 556-568 (1959)
[11] Kurihara, Y., On the use of implicit and iterative methods for the time integration of the wave equation, Mon. Weather Rev., 93, 33-46 (1965)
[12] Grotjahn, R.; O’Brien, J. J., Some inaccuracies in finite differencing hyperbolic equations, Mon. Weather Rev., 104, 180-194 (1976)
[13] Young, J. A., Comparative properties of some time differencing schemes for linear and nonlinear oscillations, Mon. Weather Rev., 96, 357-364 (1968)
[14] Grammeltvedt, A., A survey of finite-difference schemes for the primitive equations for a barotropic fluid, Mon. Weather Rev., 97, 384-404 (1969)
[15] Kreiss, H-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 199-215 (1972)
[16] Kreiss, H-O., A comparison of numerical methods used in atmospheric and oceanographic applications, (Numerical Models of Ocean Circulation (1975), National Academy of Sciences), 255-279
[17] Collatz, L., The Numerical Treatment of Differential Equations (1960), Springer-Verlag: Springer-Verlag Berlin · Zbl 0086.32601
[18] Li, J., High-order finite difference schemes for differential equations containing higher derivatives, Appl. Math. Comput., 171, 1157-1176 (2005) · Zbl 1090.65101
[19] Li, J.; Visbal, M. R., High-order compact schemes for nonlinear dispersive waves, J. Sci. Comput., 26, 1-23 (2006) · Zbl 1089.76043
[20] Boutayeb, A.; Chetouani, A., A mini-review of numerical methods for high-order problems, Int. J. Comput. Math., 84, 563-579 (2007) · Zbl 1118.65073
[21] Shukla, R. K.; Zhong, X., Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation, J. Comput. Phys., 204, 404-429 (2005) · Zbl 1067.65088
[22] Shukla, R. K.; Tatineni, M.; Zhong, X., Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations, J. Comput. Phys., 224, 1064-1094 (2007) · Zbl 1123.76044
[23] Pandit, S. K.; Kalita, J. C.; Dalal, D. C., A transient higher order compact scheme for incompressible viscous flows on geometries beyond rectangular, J. Comput. Phys., 225, 1100-1124 (2007) · Zbl 1343.76035
[24] Tyliszczak, A.; Deconinck, H., Application of time preconditioning and high-order compact discretization method for low Mach number flows, Int. J. Numer. Methods Fluids, 72, 650-670 (2012) · Zbl 1455.76133
[25] Yu, P. X.; Tian, Z. F., A compact streamfunction-velocity scheme on nonuniform grids for the 2D steady incompressible Navier-Stokes equations, Comput. Math. Appl., 66, 1192-1212 (2013) · Zbl 1381.76245
[26] Fishelov, D., A new fourth-order compact scheme for the Navier-Stokes equations in irregular domains, Comput. Math. Appl., 74, 6-25 (2017) · Zbl 1397.76092
[27] Pandit, S. K.; Chattopadhyay, A., A robust higher order compact scheme for solving general second order partial differential equation with derivative source terms on nonuniform curvilinear meshes, Comput. Math. Appl., 74, 1414-1434 (2017) · Zbl 1398.65266
[28] Pandit, S. K.; Chattopadhyay, A.; Oztop, H. F., A fourth order compact scheme for heat transfer problem in porous media, Comput. Math. Appl., 71, 805-832 (2016) · Zbl 1359.76209
[29] Tyliszczak, A.; Szymanek, E., Modeling of heat and fluid flow in granular layers using high-order compact schemes and volume penalization method, Numer. Heat Transf., Part A, Appl., 76, 737-759 (2019)
[30] Orszag, S. A.; Israeli, M., Numerical simulation of viscous incompressible flows, Annu. Rev. Fluid Mech., 6, 281-318 (1974) · Zbl 0295.76016
[31] Hirsh, R. S., Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19, 90-109 (1975) · Zbl 0326.76024
[32] Ciment, M.; Leventhal, S. H., Higher order compact implicit schemes for the wave equation, Math. Comput., 29, 985 (1975) · Zbl 0309.35043
[33] Adam, Y., A Hermitian finite difference method for the solution of parabolic equations, Comput. Math. Appl., 1, 393-406 (1975) · Zbl 0356.65086
[34] Adam, Y., Highly accurate compact implicit methods and boundary conditions, J. Comput. Phys., 24, 10-22 (1977) · Zbl 0357.65074
[35] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[36] Abide, S.; Zeghmati, B., Multigrid defect correction and fourth-order compact scheme for Poisson’s equation, Comput. Math. Appl., 73, 1433-1444 (2017) · Zbl 1372.65321
[37] Wang, H.; Zhang, Y.; Ma, X.; Qiu, J.; Liang, Y., An efficient implementation of fourth-order compact finite difference scheme for Poisson equation with Dirichlet boundary conditions, Comput. Math. Appl., 71, 1843-1860 (2016) · Zbl 1443.65288
[38] Abide, S., Finite difference preconditioning for compact scheme discretizations of the Poisson equation with variable coefficients, J. Comput. Appl. Math., 379, Article 112872 pp. (2020) · Zbl 1524.76258
[39] Lee, S.; Shin, J., Energy stable compact scheme for Cahn-Hilliard equation with periodic boundary condition, Comput. Math. Appl., 77, 189-198 (2018) · Zbl 1442.65167
[40] Abide, S.; Mansouri, W.; Cherkaoui, S.; Cheng, X., High-order compact scheme finite difference discretization for Signorini’s problem, Int. J. Comput. Math., 98, 580-591 (2021) · Zbl 1484.35228
[41] Tyliszczak, A., Projection method for high-order compact schemes for low Mach number flows in enclosures, Int. J. Numer. Methods Heat Fluid Flow, 24, 1141-1174 (2014) · Zbl 1356.76211
[42] Tyliszczak, A., A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows, J. Comput. Phys., 276, 438-467 (2014) · Zbl 1349.76541
[43] Tyliszczak, A., High-order compact difference algorithm on half-staggered meshes for low Mach number flows, Comput. Fluids, 127, 131-145 (2016) · Zbl 1390.76265
[44] Tyliszczak, A., LES-CMC study of an excited hydrogen flame, Combust. Flame, 162, 3864-3883 (2015)
[45] Wawrzak, A.; Tyliszczak, A., Implicit LES study of spark parameters impact on ignition in a temporally evolving mixing layer between H2/N2 mixture and air, Int. J. Hydrog. Energy, 43, 9815-9828 (2018)
[46] Wawrzak, A.; Tyliszczak, A., A spark ignition scenario in a temporally evolving mixing layer, Combust. Flame, 209, 353-356 (2019)
[47] Ferreira de Sousa, P. J.S. A.; Pereira, J. C.F., Fourth- and tenth-order compact finite difference solutions of perturbed circular vortex flows, Int. J. Numer. Methods Fluids, 49, 603-618 (2005) · Zbl 1236.76038
[48] Adams, N. A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041
[49] Sengupta, T. K.; Ganeriwal, G.; De, S., Analysis of central and upwind compact schemes, J. Comput. Phys., 192, 677-694 (2003) · Zbl 1038.65082
[50] De, A. K.; Eswaran, V., Analysis of a new high resolution upwind compact scheme, J. Comput. Phys., 218, 398-416 (2006) · Zbl 1103.65092
[51] Zhou, Q.; Yao, Z.; He, F.; Shen, M. Y., A new family of high-order compact upwind difference schemes with good spectral resolution, J. Comput. Phys., 227, 1306-1339 (2007) · Zbl 1128.65070
[52] Bhumkar, Y. G.; Sheu, T. W.H.; Sengupta, T. K., A dispersion relation preserving optimized upwind compact difference scheme for high accuracy flow simulations, J. Comput. Phys., 278, 378-399 (2014) · Zbl 1349.76434
[53] Subramaniam, A.; Wong, M. L.; Lele, S. K., A high-order weighted compact high resolution scheme with boundary closures for compressible turbulent flows with shocks, J. Comput. Phys., 397, Article 108822 pp. (2019) · Zbl 1453.76142
[54] Shah, A.; Yuan, L.; Khan, A., Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equation, Appl. Math. Comput., 215, 3201-3213 (2010) · Zbl 1352.76084
[55] Yu, P. X.; Tian, Z. F., An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equation, Comput. Math. Appl., 75, 224-3243 (2018) · Zbl 1409.76093
[56] Shen, M. Y.; Zhang, Z. B.; Niu, X. L., A new way for constructing high accuracy shock-capturing generalized compact difference schemes, Comput. Methods Appl. Mech. Eng., 192, 2703-2725 (2003) · Zbl 1054.76546
[57] Ashcroft, G.; Zhang, X., Optimized prefactored compact schemes, J. Comput. Phys., 190, 459-477 (2003) · Zbl 1076.76554
[58] Sengupta, T. K.; Sengupta, A., A new alternating bi-diagonal compact scheme for non-uniform grids, J. Comput. Phys., 310, 1-25 (2016) · Zbl 1349.76139
[59] Yu, P. X.; Tian, Z. F.; Zhang, H., A rational high-order compact difference method for the steady-state stream function-vorticity formulation of the Navier-Stokes equations, Comput. Math. Appl., 73, 1461-1484 (2017) · Zbl 1370.76109
[60] Fedioun, I.; Lardjane, N.; Gökalp, I., Revisiting numerical errors in direct and large eddy simulations of turbulence: physical and spectral spaces analysis, J. Comput. Phys., 174, 816-851 (2001) · Zbl 1040.76030
[61] Park, N.; Yoo, J. Y.; Choi, H., Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes, J. Comput. Phys., 198, 580-616 (2004) · Zbl 1116.76373
[62] Sengupta, T. K.; Ganerwal, G.; Dipankar, A., High accuracy compact schemes and Gibbs’ phenomenon, J. Sci. Comput., 21, 253-268 (2004) · Zbl 1071.76040
[63] Hejranfar, K.; Ezzatneshan, E., A high-order compact finite-difference lattice Boltzmann method for simulation of steady and unsteady incompressible flows, Int. J. Numer. Methods Fluids, 75, 713-746 (2014) · Zbl 1455.65132
[64] Sun, Y. X.; Tian, Z. F., High-order upwind compact finite-difference lattice Boltzmann method for viscous incompressible flows, Comput. Math. Appl., 80, 1858-1872 (2020) · Zbl 1451.76086
[65] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., Stable and accurate boundary treatments for compact, high-order finite-difference schemes, Appl. Numer. Math., 12, 55-87 (1993) · Zbl 0778.65057
[66] Svärd, M.; Nordström, J., On the order of accuracy for difference approximations of initial-boundary value problems, J. Comput. Phys., 218, 333-352 (2006) · Zbl 1123.65088
[67] Nordström, J.; Mattsson, K.; Swanson, C., Boundary conditions for a divergence free velocity-pressure formulation of the Navier-Stokes equations, J. Comput. Phys., 225, 874-890 (2007) · Zbl 1118.76046
[68] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336
[69] Vichnevetsky, R.; Bowles, J. B., Fourier Analysis of Numerical Approximations of Hyperbolic Equations (1982), SIAM: SIAM Philadelphia · Zbl 0495.65041
[70] Outlaw, C.; Derr, L.; Sarafyan, D., A sixth-order imbedded Runge-Kutta algorithm with continuously variable weights, Comput. Math. Appl., 12, 815-824 (1986) · Zbl 0626.65069
[71] Laizet, S.; Lamballais, E., High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy, J. Comput. Phys., 228, 5989-6015 (2009) · Zbl 1185.76823
[72] Lynch, R. E.; Rice, J. R.; Thomas, D. H., Direct solution of partial difference equations by tensor product methods, Numer. Math., 6, 185-199 (1964) · Zbl 0126.12703
[73] Gustafsson, B.; Kreiss, H.-O.; Oliger, J., Time Dependent Problems and Difference Methods (1995), John Wiley and Sons · Zbl 0843.65061
[74] Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171-199 (1948)
[75] Hopf, E., The partial differential equation \(u_t + u u_x = \mu u_{x x}\), Commun. Pure Appl. Math., 3, 201-230 (1950) · Zbl 0039.10403
[76] Cole, J. D., On a quasi-linear parabolic equation occurring in aerodynamics, Q. Appl. Math., 9, 225-236 (1951) · Zbl 0043.09902
[77] Bayliss, A.; Class, A.; Matkowsky, B. J., Roundoff error in computing derivatives using the Chebyshev differentiation matrix, J. Comput. Phys., 116, 380-383 (1995) · Zbl 0826.65014
[78] Lamballais, E.; Fortuné, V.; Laizet, S., Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation, J. Comput. Phys., 230, 3270-3275 (2011) · Zbl 1316.76043
[79] Knikker, R., Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows, Int. J. Numer. Methods Fluids, 59, 1063-1092 (2009) · Zbl 1158.76380
[80] Visbal, M. R.; Gaitonde, D. V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys., 181, 155-185 (2002) · Zbl 1008.65062
[81] Poinsot, T. J.; Lele, S. K., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 104-129 (1992) · Zbl 0766.76084
[82] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Taylor and Francis · Zbl 0521.76003
[83] Minion, M. L.; Brown, D. L., Performance of under-resolved two-dimensional incompressible flow simulations, II, J. Comput. Phys., 138, 734-765 (1997) · Zbl 0914.76063
[84] Wilson, Robert V.; Demure, Ayodeji O., Higher-order compact schemes for numerical simulation of incompressible flows, part II: applications, Numer. Heat Transf., Part B, Fundam., 39, 231-255 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.