×

A hybrid meshfree discretization to improve the numerical performance of peridynamic models. (English) Zbl 1507.74058

Summary: Efficient and accurate calculation of spatial integrals is of major interest in the numerical implementation of peridynamics (PD). The standard way to perform this calculation is a particle-based approach that discretizes the strong form of the PD governing equation. This approach has rapidly been adopted by the PD community since it offers some advantages. It is computationally cheaper than other available schemes, can conveniently handle material separation, and effectively deals with nonlinear PD models. Nevertheless, PD models are still computationally very expensive compared with those based on the classical continuum mechanics theory, particularly for large-scale problems in three dimensions. This results from the nonlocal nature of the PD theory which leads to interactions of each node of a discretized body with multiple surrounding nodes. Here, we propose a new approach to significantly boost the numerical efficiency of PD models. We propose a discretization scheme that employs a simple collocation procedure and is truly meshfree; i.e., it does not depend on any background integration cells. In contrast to the standard scheme, the proposed scheme requires a much smaller set of neighboring nodes (keeping the same physical length scale) to achieve a specific accuracy and is thus computationally more efficient. Our new scheme is applicable to the case of linear PD models and within neighborhoods where the solution can be approximated by smooth basis functions. Therefore, to fully exploit the advantages of both the standard and the proposed schemes, a hybrid discretization is presented that combines both approaches within an adaptive framework. The high performance of the developed framework is illustrated by several numerical examples, including brittle fracture and corrosion problems in two and three dimensions.

MSC:

74A70 Peridynamics
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[2] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 2, 151-184 (2007) · Zbl 1120.74003
[3] Silling, S. A.; Lehoucq, R. B., Convergence of peridynamics to classical elasticity theory, J. Elasticity, 93, 1, 13 (2008) · Zbl 1159.74316
[4] Silling, S. A.; Weckner, O.; Askari, E.; Bobaru, F., Crack nucleation in a peridynamic solid, Int. J. Fract., 162, 1-2, 219-227 (2010) · Zbl 1425.74045
[5] Agwai, A.; Guven, I.; Madenci, E., Predicting crack propagation with peridynamics: a comparative study, Int. J. Fract., 171, 1, 65 (2011) · Zbl 1283.74052
[6] Dipasquale, D.; Sarego, G.; Prapamonthon, P.; Yooyen, S.; Shojaei, A., A stress tensor-based failure criterion for ordinary state-based peridynamic models, J. Appl. Comput. Mech. (2021)
[7] Ha, Y. D.; Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract., 162, 1, 229-244 (2010) · Zbl 1425.74416
[8] Bobaru, F.; Zhang, G., Why do cracks branch? A peridynamic investigation of dynamic brittle fracture, Int. J. Fract., 196, 1-2, 59-98 (2015)
[9] Wang, Y.; Zhou, X.; Kou, M., Numerical studies on thermal shock crack branching instability in brittle solids, Eng. Fract. Mech., 204, 157-184 (2018)
[10] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 17-18, 1526-1535 (2005)
[11] Gerstle, W.; Sau, N.; Silling, S., Peridynamic modeling of concrete structures, Nucl. Eng. Des., 237, 12-13, 1250-1258 (2007)
[12] Hattori, G.; Hobbs, M.; Orr, J., A review on the developments of peridynamics for reinforced concrete structures, Arch. Comput. Methods Eng., 28, 4655-4686 (2021)
[13] Oterkus, E.; Madenci, E.; Weckner, O.; Silling, S.; Bogert, P.; Tessler, A., Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot, Compos. Struct., 94, 3, 839-850 (2012)
[14] Hu, W.; Ha, Y. D.; Bobaru, F., Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics, Int. J. Multiscale Comput. Eng., 9, 6, 707-726 (2011)
[15] Ren, B.; Wu, C. T.; Seleson, P.; Zeng, D.; Lyu, D., A peridynamic failure analysis of fiber-reinforced composite laminates using finite element discontinuous Galerkin approximations, Int. J. Fract., 214, 1, 49-68 (2018)
[16] Kilic, B.; Agwai, A.; Madenci, E., Peridynamic theory for progressive damage prediction in center-cracked composite laminates, Compos. Struct., 90, 2, 141-151 (2009)
[17] Ren, B.; Wu, C. T.; Seleson, P.; Zeng, D.; Nishi, M.; Pasetto, M., An FEM-based peridynamic model for failure analysis of unidirectional fiber-reinforced laminates, J. Peridynamics Nonlocal Model. (2021)
[18] Askari, E.; Bobaru, F.; Lehoucq, R.; Parks, M.; Silling, S.; Weckner, O., Peridynamics for multiscale materials modeling, J. Phys.: Conf. Ser., 125, 1, Article 012078 pp. (2008)
[19] De Meo, D.; Zhu, N.; Oterkus, E., Peridynamic modeling of granular fracture in polycrystalline materials, J. Eng. Mater. Technol., 138, 041008 (2016)
[20] Ghajari, M.; Iannucci, L.; Curtis, P., A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Comput. Methods Appl. Mech. Engrg., 276, 431-452 (2014) · Zbl 1423.74882
[21] Bobaru, F.; Duangpanya, M., The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transfer, 53, 19-20, 4047-4059 (2010) · Zbl 1194.80010
[22] Bobaru, F.; Duangpanya, M., A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities, J. Comput. Phys., 231, 7, 2764-2785 (2012) · Zbl 1253.80002
[23] Oterkus, S.; Madenci, E.; Agwai, A., Peridynamic thermal diffusion, J. Comput. Phys., 265, 71-96 (2014) · Zbl 1349.80020
[24] Shojaei, A.; Hermann, A.; Seleson, P.; Cyron, C. J., Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models, Comput. Mech., 66, 4, 773-793 (2020) · Zbl 1465.74017
[25] Bazazzadeh, S.; Morandini, M.; Zaccariotto, M.; Galvanetto, U., Simulation of chemo-thermo-mechanical problems in cement-based materials with peridynamics, Meccanica, 56, 9, 2357-2379 (2021)
[26] Chen, Z.; Jafarzadeh, S.; Zhao, J.; Bobaru, F., A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking, J. Mech. Phys. Solids, 146, Article 104203 pp. (2021)
[27] Chen, Z.; Bobaru, F., Peridynamic modeling of pitting corrosion damage, J. Mech. Phys. Solids, 78, 352-381 (2015)
[28] Rokkam, S.; Gunzburger, M.; Brothers, M.; Phan, N.; Goel, K., A nonlocal peridynamics modeling approach for corrosion damage and crack propagation, Theor. Appl. Fract. Mech., 101, 373-387 (2019)
[29] Chen, X.; Gunzburger, M., Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Engrg., 200, 9-12, 1237-1250 (2011) · Zbl 1225.74082
[30] Seleson, P.; Littlewood, D. J., Numerical tools for improved convergence of meshfree peridynamic discretizations, (Voyiadjis, G. Z., Handbook of Nonlocal Continuum Mechanics for Materials and Structures (2018), Springer: Springer Cham)
[31] Pasetto, M.; Leng, Y.; Chen, J.-S.; Foster, J. T.; Seleson, P., A reproducing kernel enhanced approach for peridynamic solutions, Comput. Methods Appl. Mech. Engrg., 340, 1044-1078 (2018) · Zbl 1440.74478
[32] Seleson, P., Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations, Comput. Methods Appl. Mech. Engrg., 282, 184-217 (2014) · Zbl 1423.74143
[33] Seleson, P.; Littlewood, D. J., Convergence studies in meshfree peridynamic simulations, Comput. Math. Appl., 71, 11, 2432-2448 (2016) · Zbl 1443.65253
[34] Mossaiby, F.; Shojaei, A.; Zaccariotto, M.; Galvanetto, U., OpenCL implementation of a high performance 3D peridynamic model on graphics accelerators, Comput. Math. Appl., 74, 8, 1856-1870 (2017) · Zbl 1524.74004
[35] Diehl, P.; Jha, P. K.; Kaiser, H.; Lipton, R.; Lévesque, M., An asynchronous and task-based implementation of peridynamics utilizing HPX-the C++ standard library for parallelism and concurrency, SN Appl. Sci., 2, 2144 (2020)
[36] Boys, B.; Dodwell, T. J.; Hobbs, M.; Girolami, M., Peripy - A high performance OpenCL peridynamics package, Comput. Methods Appl. Mech. Engrg., 386, Article 114085 pp. (2021) · Zbl 1507.74052
[37] Bobaru, F.; Yang, M.; Alves, L. F.; Silling, S. A.; Askari, E.; Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics, Internat. J. Numer. Methods Engrg., 77, 6, 852-877 (2009) · Zbl 1156.74399
[38] Bobaru, F.; Ha, Y. D., Adaptive refinement and multiscale modeling in 2D peridynamics, Int. J. Multiscale Comput. Eng., 9, 6, 635-660 (2011)
[39] Dipasquale, D.; Zaccariotto, M.; Galvanetto, U., Crack propagation with adaptive grid refinement in 2D peridynamics, Int. J. Fract., 190, 1-2, 1-22 (2014)
[40] Shojaei, A.; Mossaiby, F.; Zaccariotto, M.; Galvanetto, U., An adaptive multi-grid peridynamic method for dynamic fracture analysis, Int. J. Mech. Sci., 144, 600-617 (2018)
[41] Bazazzadeh, S.; Mossaiby, F.; Shojaei, A., An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics, Eng. Fract. Mech., 223, Article 106708 pp. (2020)
[42] Le, Q.; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput. Mech., 61, 4, 499-518 (2018) · Zbl 1446.74084
[43] Macek, R. W.; Silling, S. A., Peridynamics via finite element analysis, Finite Elem. Anal. Des., 43, 15, 1169-1178 (2007)
[44] Han, F.; Lubineau, G., Coupling of nonlocal and local continuum models by the Arlequin approach, Internat. J. Numer. Methods Engrg., 89, 6, 671-685 (2012) · Zbl 1242.74004
[45] Lubineau, G.; Azdoud, Y.; Han, F.; Rey, C.; Askari, A., A morphing strategy to couple non-local to local continuum mechanics, J. Mech. Phys. Solids, 60, 6, 1088-1102 (2012)
[46] Yu, Y.; Bargos, F. F.; You, H.; Parks, M. L.; Bittencourt, M. L.; Karniadakis, G. E., A partitioned coupling framework for peridynamics and classical theory: analysis and simulations, Comput. Methods Appl. Mech. Engrg., 340, 905-931 (2018) · Zbl 1440.74045
[47] Sun, W.; Fish, J., Superposition-based coupling of peridynamics and finite element method, Comput. Mech., 64, 1, 231-248 (2019) · Zbl 1469.74107
[48] Galvanetto, U.; Mudric, T.; Shojaei, A.; Zaccariotto, M., An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems, Mech. Res. Commun., 76, 41-47 (2016)
[49] Wildman, R. A.; Gazonas, G. A., A finite difference-augmented peridynamics method for reducing wave dispersion, Int. J. Fract., 190, 1-2, 39-52 (2014)
[50] Shojaei, A.; Mudric, T.; Zaccariotto, M.; Galvanetto, U., A coupled meshless finite point/peridynamic method for 2D dynamic fracture analysis, Int. J. Mech. Sci., 119, 419-431 (2016)
[51] Chapter 6 - coupling of CCM and PD in a meshless way, (Oterkus, E.; Oterkus, S.; Madenci, E., Peridynamic Modeling, Numerical Techniques, and Applications. Peridynamic Modeling, Numerical Techniques, and Applications, Elsevier Series in Mechanics of Advanced Materials (2021), Elsevier), 113-138
[52] Liu, W.; Hong, J.-W., A coupling approach of discretized peridynamics with finite element method, Comput. Methods Appl. Mech. Engrg., 245, 163-175 (2012) · Zbl 1354.74284
[53] Zaccariotto, M.; Mudric, T.; Tomasi, D.; Shojaei, A.; Galvanetto, U., Coupling of FEM meshes with peridynamic grids, Comput. Methods Appl. Mech. Engrg., 330, 471-497 (2018) · Zbl 1439.65103
[54] Ongaro, G.; Seleson, P.; Galvanetto, U.; Ni, T.; Zaccariotto, M., Overall equilibrium in the coupling of peridynamics and classical continuum mechanics, Comput. Methods Appl. Mech. Engrg., 381, Article 113515 pp. (2021) · Zbl 1506.74036
[55] Seleson, P.; Beneddine, S.; Prudhomme, S., A force-based coupling scheme for peridynamics and classical elasticity, Comput. Mater. Sci., 66, 34-49 (2013)
[56] Agrawal, S.; Zheng, S.; Foster, J. T.; Sharma, M. M., Coupling of meshfree peridynamics with the finite volume method for poroelastic problems, J. Pet. Sci. Eng., 192, Article 107252 pp. (2020)
[57] Bie, Y. H.; Cui, X. Y.; Li, Z. C., A coupling approach of state-based peridynamics with node-based smoothed finite element method, Comput. Methods Appl. Mech. Engrg., 331, 675-700 (2018) · Zbl 1439.74392
[58] Silling, S. A.; Littlewood, D. J.; Seleson, P., Variable horizon in a peridynamic medium, J. Mech. Mater. Struct., 10, 5, 591-612 (2015)
[59] D’Elia, M.; Li, X.; Seleson, P.; Tian, X.; Yu, Y., A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics., J. Peridynamics Nonlocal Model. (2021)
[60] Seleson, P.; Parks, M., On the role of the influence function in the peridynamic theory, Int. J. Multiscale Comput. Eng., 9, 6, 689-706 (2011)
[61] Oñate, E.; Perazzo, F.; Miquel, J., A finite point method for elasticity problems, Comput. Struct., 79, 22-25, 2151-2163 (2001)
[62] Shojaei, A.; Mossaiby, F.; Zaccariotto, M.; Galvanetto, U., The meshless finite point method for transient elastodynamic problems, Acta Mech., 228, 10, 3581-3593 (2017) · Zbl 1384.74052
[63] Seleson, P. D., Peridynamic Multiscale Models for the Mechanics of Materials: Constitutive Relations, Upscaling from Atomistic Systems, and Interface Problems (2010), The Florida State University, (Ph.D. thesis)
[64] Seleson, P.; Ha, Y. D.; Beneddine, S., Concurrent coupling of bond-based peridynamics and the Navier equation of classical elasticity by blending, Int. J. Multiscale Comput. Eng., 13, 2, 91-113 (2015)
[65] Trageser, J.; Seleson, P., Bond-based peridynamics: A tale of two Poisson’s ratios, J. Peridynamics Nonlocal Model., 2, 3, 278-288 (2020)
[66] Chen, Z.; Bobaru, F., Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion, Comput. Phys. Comm., 197, 51-60 (2015)
[67] Wang, J.; Hu, W.; Zhang, X.; Pan, W., Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics, Int. J. Heat Mass Transfer, 139, 948-962 (2019)
[68] Emmrich, E.; Weckner, O., The peridynamic equation and its spatial discretisation, Math. Model. Anal., 12, 1, 17-27 (2007) · Zbl 1121.65073
[69] Yu, K.; Xin, X. J.; Lease, K. B., A new adaptive integration method for the peridynamic theory, Modelling Simulation Mater. Sci. Eng., 19, 4, Article 045003 pp. (2011)
[70] Parks, M. L.; Lehoucq, R. B.; Plimpton, S. J.; Silling, S. A., Implementing peridynamics within a molecular dynamics code, Comput. Phys. Comm., 179, 11, 777-783 (2008) · Zbl 1197.82014
[71] Parks, M. L.; Seleson, P.; Plimpton, S. J.; Lehoucq, R. B.; Silling, S. A., Peridynamics with LAMMPS: A User Guide v0.2 Beta, Report SAND2010-5549 (2010), Sandia National Laboratories: Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550
[72] Parks, M. L.; Littlewood, D. J.; Mitchell, J. A.; Silling, S. A., Peridigm Users’ Guide v1.0.0, Report SAND2012-7800 (2012), Sandia National Laboratories: Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550
[73] Bobaru, F.; Foster, J. T.; Geubelle, P. H.; Silling, S. A., Handbook of Peridynamic Modeling (2016), CRC Press · Zbl 1351.74001
[74] Mossaiby, F.; Shojaei, A.; Boroomand, B.; Zaccariotto, M.; Galvanetto, U., Local Dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems, Comput. Methods Appl. Mech. Engrg., 362, Article 112856 pp. (2020) · Zbl 1439.74147
[75] Liu, G. R., Meshfree Methods: Moving beyond the Finite Element Method (2009), CRC Press
[76] Boroomand, B.; Tabatabaei, A.; Oñate, E., Simple modifications for stabilization of the finite point method, Internat. J. Numer. Methods Engrg., 63, 3, 351-379 (2005) · Zbl 1140.74568
[77] Boroomand, B.; Parand, S., Towards a general interpolation scheme, Comput. Methods Appl. Mech. Engrg., 381, Article 113830 pp. (2021) · Zbl 1506.65026
[78] Trask, N.; You, H.; Yu, Y.; Parks, M. L., An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics, Comput. Methods Appl. Mech. Engrg., 343, 151-165 (2019) · Zbl 1440.74463
[79] Trask, N.; Huntington, B.; Littlewood, D., Asymptotically compatible meshfree discretization of state-based peridynamics for linearly elastic composite materials (2019), arXiv preprint arXiv:1903.00383
[80] Leng, Y.; Tian, X.; Trask, N. A.; Foster, J. T., Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation, Comput. Methods Appl. Mech. Engrg., 370, Article 113264 pp. (2020) · Zbl 1506.74478
[81] Leng, Y.; Tian, X.; Trask, N.; Foster, J. T., Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal diffusion, SIAM J. Numer. Anal., 59, 1, 88-118 (2021) · Zbl 1456.82636
[82] Tian, X.; Du, Q., Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51, 6, 3458-3482 (2013) · Zbl 1295.82021
[83] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 4, 1641-1665 (2014) · Zbl 1303.65098
[84] Du, Q.; Tian, X., Asymptotically compatible schemes for peridynamics based on numerical quadratures, (ASME International Mechanical Engineering Congress and Exposition, Vol. 46421 (2014), American Society of Mechanical Engineers), V001T01A058
[85] Seleson, P.; Du, Q.; Parks, M. L., On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models, Comput. Methods Appl. Mech. Engrg., 311, 698-722 (2016) · Zbl 1439.74044
[86] Kalthoff, J. F., Modes of dynamic shear failure in solids, Int. J. Fract., 101, 1, 1-31 (2000)
[87] Silling, S. A., Peridynamic modeling of the Kalthoff-Winkler experiment, (Submission for the 2001 Sandia Prize in Computational Science (2002))
[88] Belytschko, T.; Chen, H.; Xu, J.; Zi, G., Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Internat. J. Numer. Methods Engrg., 58, 12, 1873-1905 (2003) · Zbl 1032.74662
[89] Song, J.-H.; Areias, P. M.A.; Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes, Internat. J. Numer. Methods Engrg., 67, 6, 868-893 (2006) · Zbl 1113.74078
[90] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A simple and robust three-dimensional cracking-particle method without enrichment, Comput. Methods Appl. Mech. Engrg., 199, 37-40, 2437-2455 (2010) · Zbl 1231.74493
[91] Ren, H.; Zhuang, X.; Rabczuk, T., Dual-horizon peridynamics: A stable solution to varying horizons, Comput. Methods Appl. Mech. Engrg., 318, 762-782 (2017) · Zbl 1439.74030
[92] Jafarzadeh, S.; Chen, Z.; Li, S.; Bobaru, F., A peridynamic mechano-chemical damage model for stress-assisted corrosion, Electrochim. Acta, 323, Article 134795 pp. (2019)
[93] Silling, S. A., Linearized theory of peridynamic states, J. Elasticity, 99, 1, 85-111 (2010) · Zbl 1188.74008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.