×

Fast solution algorithm for a three-dimensional inverse multifrequency problem of scalar acoustics with data in a cylindrical domain. (English. Russian original) Zbl 07492856

Comput. Math. Math. Phys. 62, No. 2, 287-301 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 289-304 (2022).
Summary: A new algorithm for stable solution of a three-dimensional scalar inverse problem of acoustic sensing of an inhomogeneous medium in a cylindrical domain is proposed. Data for its solution is the complex amplitude of the wave field measured outside the acoustic inhomogeneities in the cylindrical layer. With the help of the Fourier transform and Fourier series, the inverse problem is reduced to a set of one-dimensional Fredholm integral equations of the first kind. Next, the complex amplitude of the wave field is computed in the inhomogeneity region and the desired sonic velocity field is found in this region. When run on a moderate-performance personal computer, the algorithm takes tens of seconds to solve the inverse problem on rather fine three-dimensional grids. The accuracy of the algorithm is analyzed numerically as applied to test inverse problems at different frequencies, and the stability of the algorithm with respect to data perturbations is investigated.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ramm, A. G., Multidimensional Inverse Scattering Problems (1992), Harlow: Longman Scientific and Technical, Harlow · Zbl 0746.35056
[2] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998), Berlin: Springer, Berlin · Zbl 0893.35138 · doi:10.1007/978-3-662-03537-5
[3] Goryunov, A. A.; Saskovets, A. V., Inverse Scattering Problems in Acoustics (1989), Moscow: Mosk. Gos. Univ., Moscow
[4] V. A. Burov and O. D. Rumyantseva, Inverse Wave Problems of Acoustic Tomography, Part. 2: Inverse Problems of Acoustic Scattering (LENAND, Moscow, 2020) [in Russian].
[5] Bakushinsky, A.; Goncharsky, A., Ill-Posed Problems: Theory and Applications (1994), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0832.35001 · doi:10.1007/978-94-011-1026-6
[6] Bakushinsky, A. B.; Kokurin, M. Yu., Iterative Methods for Approximate Solution of Inverse Problems: Mathematics and Its Applications (2004), Dordrecht: Kluwer Academic, Dordrecht · Zbl 1070.65038 · doi:10.1007/978-1-4020-3122-9
[7] Goncharskii, A. V.; Romanov, S. Yu., Two approaches to the solution of coefficient inverse problems for wave equations, Comput. Math. Math. Phys., 52, 245-251 (2012) · Zbl 1249.35198 · doi:10.1134/S0965542512020078
[8] Goncharskii, A. V.; Romanov, S. Yu., Supercomputer technologies in the development of methods for solving inverse problems in ultrasonic tomography, Vychisl. Metody Program. Novye Vychisl. Tekhnol., 13, 235-238 (2012)
[9] Belishev, M. I., Recent progress in the boundary control method, Inverse Probl., 23, 1-67 (2007) · Zbl 1126.35089 · doi:10.1088/0266-5611/23/5/R01
[10] L. N. Pestov, V. M. Bolgova, and A. N. Danilin, “Numerical reconstruction of three-dimensional speed of sound by applying a boundary control method,” Vestn. Yugor. Gos. Univ., No. 3, 92-98 (2011).
[11] Burov, V. A.; Alekseenko, N. V.; Rumyantseva, O. D., Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem, Acoust. Phys., 55, 843-856 (2009) · doi:10.1134/S1063771009060190
[12] Novikov, R. G., Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude for fixed energy, Funct. Anal. Appl., 20, 246-248 (1986) · Zbl 0637.35067 · doi:10.1007/BF01078481
[13] Burov, V. A.; Vecherin, S. N.; Morozov, S. A.; Rumyantseva, O. D., Modeling of the exact solution of the inverse scattering problem by functional methods, Acoust. Phys., 56, 541-559 (2010) · doi:10.1134/S1063771010040202
[14] Beilina, L.; Klibanov, M. V., Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (2012), New York: Springer, New York · Zbl 1255.65168 · doi:10.1007/978-1-4419-7805-9
[15] Kabanikhin, S. I.; Satybaev, A. D.; Shishlenin, M. A., Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems (2004), Utrecht: VSP, Utrecht · Zbl 1069.65105 · doi:10.1515/9783110960716
[16] Klibanov, M. V.; Kolesov, A. E., Convexification of a 3D coefficient inverse scattering problem, Comput. Math. Appl., 77, 1681-1702 (2019) · Zbl 1442.78007 · doi:10.1016/j.camwa.2018.03.016
[17] Klibanov, M. V.; Kolesov, A. E., SIAM J. Imaging Sci., 12, 576-603 (2019) · doi:10.1137/18M1191658
[18] Bakushinsky, A. B.; Leonov, A. S., Fast numerical method of solving 3D coefficient inverse problem for wave equation with integral data, J. Inverse Ill-Posed Probl., 26, 477-492 (2018) · Zbl 1398.65347 · doi:10.1515/jiip-2017-0041
[19] Bakushinskii, A. B.; Leonov, A. S., Low-cost numerical method for solving a coefficient inverse problem for the wave equation in three-dimensional space, Comput. Math. Math. Phys., 58, 548-561 (2018) · Zbl 1457.65081 · doi:10.1134/S0965542518040073
[20] Bakushinskii, A. B.; Leonov, A. S., Numerical solution to a three-dimensional coefficient inverse problem for the wave equation with integral data in a cylindrical domain, Sib. Zh. Vychisl. Mat., 22, 381-396 (2019) · Zbl 07607924
[21] Bakushinskii, A. B.; Leonov, A. S., Numerical solution of an inverse multifrequency problem in scalar acoustics, Comput. Math. Math. Phys., 60, 987-999 (2020) · doi:10.1134/S0965542520060032
[22] Evstigneev, R. O.; Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A., “Inverse problem of reconstructing body inhomogeneities for early disease detection by microwave tomographic imaging,” Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-, Mat. Nauki, 44, 3-17 (2017)
[23] B. M. Budak, A. A. Samarskii, and A. N. Tikhonov, A Collection of Problems on Mathematical Physics (Pergamon, Oxford, 1964; Nauka, Moscow, 1972). · Zbl 0118.39701
[24] V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1976; Mir, Moscow, 1979).
[25] Riesz, F.; Sz, B., Nagy (1991), Dover, New York: Functional Analysis, Dover, New York
[26] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Nauka, Moscow, 1990; Kluwer Academic, Dordrecht, 1995). · Zbl 0831.65059
[27] Leonov, A. S., Solution of Ill-Posed Inverse Problems: Theory, Practical Algorithms, and Demonstrations in MATLAB (2013), Moscow: Librokom, Moscow
[28] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (1996), Dordrecht: Kluwer, Dordrecht · Zbl 0859.65054 · doi:10.1007/978-94-009-1740-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.