Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation. (English) Zbl 0754.45008

The authors study the solvability of the nonlinear Volterra equation
\(x(t)=u(t)+\int^ t_ 0k(t,s)f[s,x(m(s))]ds\) \((0\leq t<\infty)\) in the space of the functions \(x\in L^ 1(0,\infty)\) of locally bounded variation.
The main tool is the Vitali compactness criterion in \(L^ 1\), combined with a measure of weak non-compactness \(\gamma\) which is equivalent to F. S. De Blasi’s measure \(\beta\) [Bull. Math. Soc. Sci. Math. R. S. R. n. Ser. 21(69), 259-262 (1977; Zbl 0365.46015)].


45G10 Other nonlinear integral equations
45D05 Volterra integral equations
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.


Zbl 0365.46015
Full Text: DOI


[1] Akmerov, R. R.; Kamenskii, M. I.; Potapov, A. S.; Rodkina, A. E.; Sadovskii, B. N., Measures of Noncompactness and Condensing Operators (1986), Nauka: Nauka Novosibirsk, [In Russian] · Zbl 0623.47070
[2] Appell, J., Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl., 83, 251-263 (1981) · Zbl 0495.45007
[3] Appell, J., On the solvability of nonlinear noncompact problems in function spaces with applications to integral and differential equations, Boll. Un. Mat. Ital. B (6), 1, 1161-1177 (1982) · Zbl 0511.47045
[4] Appell, J.; De Pascale, E., Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funztioni misurabili, Boll. Un. Mat. Ital. B (6), 3, 497-515 (1984) · Zbl 0507.46025
[5] Appell, J.; Zabrejko, P. P., Continuity properties of the superposition operator (1986), University of Augsburg, No. 131 · Zbl 0683.47045
[6] Banaś, J., On the superposition operator and integrable solutions of some functional equations, Nonlinear Anal., 12, 777-784 (1988) · Zbl 0656.47057
[7] Banaś, J., Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. Ser. A, 46, 61-68 (1989) · Zbl 0666.45008
[8] Banaś, J.; Goebel, K., Measures of Noncompactness in Banach Spaces, (Lecture Notes in Pure and Applied Math., Vol. 60 (1980), Dekker: Dekker New York/Basel) · Zbl 0441.47056
[9] Banaś, J.; Knap, Z., Integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid, 2, 31-38 (1989) · Zbl 0679.45003
[10] Banaś, J.; Knap, Z., Measures of weak noncompactness and nonlinear integral equations of convolution type, J. Math. Anal. Appl., 146, 353-362 (1990) · Zbl 0699.45002
[11] Caratheodory, K., Vorlesungen über reele Funktionen (1918), de Gruyter: de Gruyter Leipzig/Berlin
[12] Darbo, G., Punti uniti in transformazioni a condominio non compatto, (Rend. Sem. Mat. Univ. Padova, 24 (1955)), 84-92 · Zbl 0064.35704
[13] De Blasi, F. S., On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 21, 259-262 (1977) · Zbl 0365.46015
[14] Dunford, N.; Schwartz, J., Linear Operators, I (1963), Int. Publ.,: Int. Publ., Leyden
[15] Emmanuele, G., Measure of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. R.S. Roumanie, 25, 253-258 (1981) · Zbl 0482.47027
[17] Juberg, R. K., Measure of noncompactness and interpolation of compactness for a class of integral transformations, Duke Math. J., 41, 511-525 (1974) · Zbl 0291.47027
[18] Krasnosel’skii, M. A., On the continuity of the operator \(Fu (x) = f(x, u(x))\), Dokl. Akad. Nauk SSSR, 77, 185-188 (1951), [In Russian]
[19] Krasnosel’skii, M. A.; Zabrejko, P. P.; Pustyl’nik, J. I.; Sobolevskii, P. J., Integral Operators in Spaces of Summable Functions (1976), Noordhoff: Noordhoff Leyden
[20] Lakshmikantham, V.; Leela, S., Nonlinear Differential Equations in Abstract Spaces (1981), Pergamon: Pergamon New York · Zbl 0456.34002
[21] Natanson, I. P., Theory of Functions of a Real Variable (1960), Ungar: Ungar New York · Zbl 0091.05404
[22] Nowicka, K., On the existence of solutions for some integral-functional equation, Comment. Math., 23, 279-293 (1983)
[23] Sadovskii, B. N., On measures of noncompactness and condensing operators, Probl. Mat. Anal. Slozh. Sistem. Voronezh Gos. Univ., 2, 89-119 (1968), [In Russian]
[24] Stuart, C. A., The measure of noncompactness of some linear integral operators, (Proc. Roy. Soc. Edinburgh, 71 (1973)), 167-179 · Zbl 0314.47029
[25] Tomaselli, G., A class of inequalities, Boll. Un. Mat. Ital., 21, 622-631 (1969) · Zbl 0188.12103
[26] Zabrejko, P. P.; Koshelev, A. I.; Krasnosel’skii, M. A.; Mikhlin, S. G.; Rakovshchik, L. S.; Stecenko, V. J., Integral Equations (1975), Noordhoff: Noordhoff Leyden
[27] Zabrejko, P. P.; Pustyl’nik, J. I., On the continuity and complete continuity of nonlinear integral operators in \(L^p\) spaces, Uspekhi Mat. Nauk, 19, 204-205 (1964), [In Russian]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.