×

Weighted Hardy and Opial-type inequalities. (English) Zbl 0756.26011

A characterization of weights \(u,v\) is given for which the Hardy operator \(Hf(x)=\int^ x_ af(t)dt\) is bounded from \(L^ p((a,b);u dx)\) into \(L^ q((a,b);v dx)\) with \(0<q<1<p<\infty\) (Section 2). In Section 3 the author shows that Opial-type inequalities easily follow from inequalities of Hardy type.
Reviewer: B.Opic (Praha)

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Beesack, P. R., On an integral inequality of Z. Opial, Trans. Amer. Math. Soc., 104, 470-475 (1962) · Zbl 0122.30102
[2] Beesack, P. R., Elementary proofs of some Opial-type integral inequalities, J. Analyse Math., 36, 1-14 (1979) · Zbl 0437.26006
[3] Boyd, D. W.; Wong, J. S.W, An extension of Opial’s inequality, J. Math. Anal. Appl., 19, 100-102 (1967) · Zbl 0173.05701
[4] Bradley, J. S., Hardy inequalities with mixed norms, Canad. Math. Bull., 21, 405-408 (1978) · Zbl 0402.26006
[5] Das, K. M.; Beesack, P. R., Extensions of Opial’s inequality, Pacific J. Math., 26, 215-232 (1968) · Zbl 0162.07901
[6] Halperin, I., Function spaces, Canad. J. Math., 5, 273-288 (1953) · Zbl 0052.11303
[7] Levinson, N., On an inequality of Opial and Beesack, (Proc. Amer. Math. Soc., 15 (1964)), 565-566 · Zbl 0134.27902
[8] Mallows, C. L., An even simpler proof of Opial’s inequality, (Proc. Amer. Math. Soc., 16 (1965)), 173 · Zbl 0152.05002
[9] Maz’ja, V. G., Sobolev Spaces (1985), Springer-Verlag: Springer-Verlag Berlin/Heidelberg
[10] Muckenhoupt, B., Hardy’s inequality with weights, Studia Math., 44, 31-38 (1972) · Zbl 0236.26015
[11] Olech, C., A simple proof of a certain result of Z. Opial, Ann. Polon. Math., 8, 61-63 (1960) · Zbl 0089.27404
[12] Opial, Z., Sur une inégalité, Ann. Polon. Math., 8, 29-32 (1960) · Zbl 0089.27403
[13] Pachpatte, B. G., On Opial-type integral inequalities, J. Math. Anal. Appl., 120, 547-556 (1986) · Zbl 0608.26009
[14] Pederson, R. N., On an inequality of Opial, Beesack and Levinson, (Proc. Amer. Math. Soc., 16 (1965)), 174 · Zbl 0125.03102
[15] Sinnamon, G. J., Operators on Lebesgue Spaces with General Measures, (Doctoral Thesis (1987), McMaster University)
[16] Yang, G. S., On a certain result of Z. Opial, (Proc. Japan Acad., 42 (1966)), 78-83 · Zbl 0151.05202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.