Li, Deli; Bhaskara Rao, M.; Wang, Xiangchen Complete convergence of moving average processes. (English) Zbl 0756.60031 Stat. Probab. Lett. 14, No. 2, 111-114 (1992). \([Y_ i\); \(-\infty<i<\infty]\) is a doubly infinite sequence of i.i.d. random variables; \([a_ i\); \(-\infty<i<\infty]\) is an absolutely summable sequence of real numbers, and \(X_ k\) is defined as \(\sum_{i=-\infty}^ \infty a_{i+k}Y_ i\), for \(k\geq 1\). Suppose \(r\), \(t\) are values satisfying \(1\leq t<2\) and \(r>1\). Then it is shown that \(E(Y_ 1)=0\) and \(E| Y_ 1|^{rt}<\infty\) imply \[ \sum_{n\geq 1}n^{r-2}P\left[\left|\sum_{k=1}^ n X_ k\right|>\varepsilon n^{1/t}\right]<\infty\qquad\text{for all }\varepsilon>0. \] Reviewer: L.Weiss (Ithaca) Cited in 6 ReviewsCited in 46 Documents MSC: 60F15 Strong limit theorems 60G50 Sums of independent random variables; random walks Keywords:complete convergence; moving average processes; doubly infinite sequence of i.i.d. random variables PDF BibTeX XML Cite \textit{D. Li} et al., Stat. Probab. Lett. 14, No. 2, 111--114 (1992; Zbl 0756.60031) Full Text: DOI References: [1] Burton, R. M.; Dehling, H., Large deviations for some weakly dependent random processes, Statist. Probab. Lett., 9, 397-401 (1990) · Zbl 0699.60016 [2] Hoffmann-Jørgensen, J., Sums of independent Banach space valued random variables, Studia Math., 52, 159-186 (1974) · Zbl 0265.60005 [3] Hsu, P. L.; Robbins, H., Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci., 33, 25-31 (1947) · Zbl 0030.20101 [4] Ibragimov, I. A., Some limit theorems for stationary processes, Theory Probab. Appl., 7, 349-382 (1962) · Zbl 0119.14204 [5] Jain, N. C., Tail probability for sums of independent Banach space valued random variables, Z. Wahrsch. Verw. Gebiete, 33, 155-166 (1975) · Zbl 0304.60033 [6] Katz, M., The probability in the tail of a distribution, Ann. Math. Statist., 34, 312-318 (1963) · Zbl 0209.49503 [7] Stout, W. F., Some results on the complete and almost sure convergence of linear combinations of independent random variables and martingale differences, Anm. Math. Statist., 39, 1549-1562 (1968) · Zbl 0165.52702 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.