×

Complete convergence of moving average processes. (English) Zbl 0756.60031

\([Y_ i\); \(-\infty<i<\infty]\) is a doubly infinite sequence of i.i.d. random variables; \([a_ i\); \(-\infty<i<\infty]\) is an absolutely summable sequence of real numbers, and \(X_ k\) is defined as \(\sum_{i=-\infty}^ \infty a_{i+k}Y_ i\), for \(k\geq 1\). Suppose \(r\), \(t\) are values satisfying \(1\leq t<2\) and \(r>1\). Then it is shown that \(E(Y_ 1)=0\) and \(E| Y_ 1|^{rt}<\infty\) imply \[ \sum_{n\geq 1}n^{r-2}P\left[\left|\sum_{k=1}^ n X_ k\right|>\varepsilon n^{1/t}\right]<\infty\qquad\text{for all }\varepsilon>0. \]
Reviewer: L.Weiss (Ithaca)

MSC:

60F15 Strong limit theorems
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Burton, R. M.; Dehling, H., Large deviations for some weakly dependent random processes, Statist. Probab. Lett., 9, 397-401 (1990) · Zbl 0699.60016
[2] Hoffmann-Jørgensen, J., Sums of independent Banach space valued random variables, Studia Math., 52, 159-186 (1974) · Zbl 0265.60005
[3] Hsu, P. L.; Robbins, H., Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci., 33, 25-31 (1947) · Zbl 0030.20101
[4] Ibragimov, I. A., Some limit theorems for stationary processes, Theory Probab. Appl., 7, 349-382 (1962) · Zbl 0119.14204
[5] Jain, N. C., Tail probability for sums of independent Banach space valued random variables, Z. Wahrsch. Verw. Gebiete, 33, 155-166 (1975) · Zbl 0304.60033
[6] Katz, M., The probability in the tail of a distribution, Ann. Math. Statist., 34, 312-318 (1963) · Zbl 0209.49503
[7] Stout, W. F., Some results on the complete and almost sure convergence of linear combinations of independent random variables and martingale differences, Anm. Math. Statist., 39, 1549-1562 (1968) · Zbl 0165.52702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.