Embedding problem of fuzzy number space. I. (English) Zbl 0757.46066

Summary: Using a theorem of R. Goetschel and W. Voxman [ibid. 18, 31- 43 (1986; Zbl 0626.26014)] we can embed fuzzy number space \(E^ 1\) into a concrete Banach space \(\overline{C}[0,1]\times\overline{C}[0,1]\). In addition, using a Rådström embedding theorem, M. L. Puri and D. A. Ralescu [J. Math. Anal. Appl. 91, 552-558 (1983; Zbl 0528.54009)] embed \(E^ 1\) into a normed space \(X\) with \(X=C-C\). In fact, \(\overline{X}\), the completion of \(X\), is isometrically isomorphic to \(\overline{C}[0,1]\times\overline{C}[0,1]\).


46S40 Fuzzy functional analysis
03E72 Theory of fuzzy sets, etc.
54A40 Fuzzy topology
Full Text: DOI


[1] Bergstrom, H., Weak Convergence of Measures (1982), Academic Press: Academic Press New York · Zbl 0538.28003
[2] Goetschel, R.; Voxman, W., Elementary fuzzy calculus, Fuzzy Sets and Systems, 18, 31-43 (1986) · Zbl 0626.26014
[3] Natanson, N., Theory of Real Variables (1950), Soviet Academic Press: Soviet Academic Press Moscow, (in Russian)
[4] Kaleva, O., Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301-317 (1987) · Zbl 0646.34019
[5] Kaleva, O., The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35, 389-396 (1990) · Zbl 0696.34005
[6] Marłoka, M., On fuzzy integrals, (Albrycht, J.; Wisnieski, H., Proc. 2nd Polish Symp. on Interval and Fuzzy Mathematics (1987), Politechnika Poznansk: Politechnika Poznansk Poznan)
[7] Puri, M. L.; Ralescu, D. A., Differentials for fuzzy functions, J. Math. Anal. Appl., 91, 552-558 (1983) · Zbl 0528.54009
[8] Puri, M. L.; Ralescu, D. A., Fuzzy random variables, J. Math. Anal. Appl., 114, 409-422 (1986) · Zbl 0592.60004
[9] Rådström, H., An embedding theorem for spaces of convex sets, (Proc. Amer. Math. Soc., 3 (1952)), 165-169 · Zbl 0046.33304
[10] Yosida, K., Functional Analysis (1965), Springer-Verlag: Springer-Verlag Berlin · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.