×

A nonlinear discrete model for approximating a conservative multi-fractional Zakharov system: analysis and computational simulations. (English) Zbl 07578504

Summary: A system of two partial differential equations with fractional diffusion is considered in this study. The system extends the conventional Zakharov system with unknowns being nonlinearly coupled complex- and real-valued functions. The diffusion is understood in the Riesz sense, and suitable initial-boundary conditions are imposed on an open and bounded domain of the real numbers. It is shown that the mass and Higgs’ free energy of the system are conserved. Moreover, the total energy is proven to be dissipated, and that both the free and the total energy are non-negative. As a corollary from the conservation of energy, we find that the solutions of the system are bounded throughout time. Motivated by these properties on the solutions of the system, we propose a numerical model to approximate the fractional Zakharov system via finite-difference approaches. Along with this numerical model for solving the continuous system, discrete analogues for the mass, the Higgs’ free energy and the total energy are we provided. Furthermore, utilizing Browder’s fixed-point theorem, we establish the solubility of the discrete model. It is shown that the discrete total mass and the discrete free energy are conserved, in agreement with the continuous case. The discrete energy functionals (both the discrete free energy and the discrete total energy) are proven to be non-negative functions of the discrete time thoroughly the boundedness of the numerical solutions. Properties of consistency, stability and convergence of the scheme are also studied rigorously. Numerical simulations illustrate some of the anticipated theoretical features of our finite-difference solution procedure.

MSC:

82-XX Statistical mechanics, structure of matter
81-XX Quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aceto, L.; Novati, P., Rational approximations to fractional powers of self-adjoint positive operators, Numer. Math., 143, 1, 1-16 (2019) · Zbl 07088062
[2] Castillo, P.; Gómez, S., Conservative local discontinuous Galerkin method for the fractional Klein-Gordon-Schrödinger system with generalized Yukawa interaction, Numer. Algorithms, 84, 1, 407-425 (2020) · Zbl 1434.65155
[3] Celia, M. A.; Binning, P., A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow, Water Resour. Res., 28, 10, 2819-2828 (1992)
[4] Celia, M. A.; Bouloutas, E. T.; Zarba, R. L., A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 7, 1483-1496 (1990)
[5] Farmakis, I.; Moskowitz, M., Fixed Point Theorems and their Applications (2013), World Scientific · Zbl 1276.47001
[6] Fei, Z.; Pérez-García, V. M.; Vázquez, L., Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput., 71, 2-3, 165-177 (1995) · Zbl 0832.65136
[7] Fei, Z.; Vázquez, L., Two energy conserving numerical schemes for the sine-Gordon equation, Appl. Math. Comput., 45, 1, 17-30 (1991) · Zbl 0732.65107
[8] Furihata, D.; Matsuo, T., Discrete variational derivative method — A structure-preserving numerical method for partial differential equations, Sugaku Expositions, 31, 2, 231-255 (2018) · Zbl 1407.65248
[9] Garcia, L.; Haas, F.; De Oliveira, L.; Goedert, J., Modified Zakharov equations for plasmas with a quantum correction, Phys. Plasmas, 12, 1, Article 012302 pp. (2005)
[10] Gorenflo, R.; Mainardi, F., Fractional calculus, (Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer), 223-276 · Zbl 1438.26010
[11] Hendy, A. S.; Macías-Díaz, J. E., An efficient Hamiltonian numerical model for a fractional Klein-Gordon equation through weighted-shifted Grünwald differences, J. Math. Chem., 57, 5, 1394-1412 (2019) · Zbl 1417.81128
[12] Jiménez, S.; Vázquez, L., Analysis of four numerical schemes for a nonlinear Klein-Gordon equation, Appl. Math. Comput., 35, 1, 61-94 (1990) · Zbl 0697.65090
[13] Kane, C.; Marsden, J. E.; Ortiz, M.; West, M., Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, Internat. J. Numer. Methods Engrg., 49, 10, 1295-1325 (2000) · Zbl 0969.70004
[14] Kou, J.; Wang, X.; Zeng, M.; Cai, J., Energy stable and mass conservative numerical method for a generalized hydrodynamic phase-field model with different densities, Phys. Fluids, 32, 11, Article 117103 pp. (2020)
[15] Li, M.; Huang, C.; Zhao, Y., Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation, Numer. Algorithms, 84, 3, 1081-1119 (2020) · Zbl 1442.65168
[16] Lin, F.-R.; Wang, Q.-Y.; Jin, X.-Q., Crank-Nicolson-weighted-shifted-Grünwald-difference schemes for space Riesz variable-order fractional diffusion equations, Numer. Algorithms, 87, 2, 601-631 (2021) · Zbl 1473.65112
[17] Liu, S.; Fu, Z.; Liu, S.; Wang, Z., The periodic solutions for a class of coupled nonlinear Klein-Gordon equations, Phys. Lett. A, 323, 5-6, 415-420 (2004) · Zbl 1118.81399
[18] Liu, S.; Fu, Z.; Liu, S.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289, 1-2, 69-74 (2001) · Zbl 0972.35062
[19] Macías-Díaz, J. E., An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions, Commun. Nonlinear Sci. Numer. Simul., 59, 67-87 (2018) · Zbl 1510.65200
[20] Macías-Díaz, J. E., Fractional generalization of the Fermi-Pasta-Ulam-Tsingou media and theoretical analysis of an explicit variational scheme, Commun. Nonlinear Sci. Numer. Simul., 88, Article 105158 pp. (2020) · Zbl 1452.65202
[21] Macías-Díaz, J. E.; Martínez, R.; Sheng, Q., Two energy-preserving numerical models for a multi-fractional extension of the Klein-Gordon-Zakharov system, J. Comput. Appl. Math., Article 114023 pp. (2021) · Zbl 1486.65117
[22] Macías-Díaz, J. E.; Medina-Ramírez, I., An implicit four-step computational method in the study on the effects of damping in a modified \(\alpha \)-Fermi-Pasta-Ulam medium, Commun. Nonlinear Sci. Numer. Simul., 14, 7, 3200-3212 (2009) · Zbl 1221.82094
[23] Mainardi, F., Fractional calculus, (Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer), 291-348 · Zbl 0917.73004
[24] Martínez, R.; Macías-Díaz, J. E., An energy-preserving and efficient scheme for a double-fractional conservative Klein-Gordon-Zakharov system, Appl. Numer. Math., 158, 292-313 (2020) · Zbl 1450.35235
[25] Martínez, R.; Macías-Díaz, J. E.; Hendy, A. S., Theoretical analysis of an explicit energy-conserving scheme for a fractional Klein-Gordon-Zakharov system, Appl. Numer. Math., 146, 245-259 (2019) · Zbl 1428.35595
[26] Martínez, R.; Macías-Díaz, J. E.; Sheng, Q., An implicit semi-linear discretization of a bi-fractional Klein-Gordon-Zakharov system which conserves the total energy, Appl. Numer. Math., 169, 179-200 (2021) · Zbl 1475.35321
[27] Montagu, E.; Norbury, J., Solving nonlinear non-local problems using positive square-root operators, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 476, 2239, Article 20190817 pp. (2020) · Zbl 1472.35338
[28] Muñoz-Pérez, L. F.; Macías-Díaz, J. E., On the solution of a generalized higgs boson equation in the de sitter space-time through an efficient and Hamiltonian scheme, J. Comput. Phys., 417, Article 109568 pp. (2020) · Zbl 1437.65109
[29] Muslih, S. I.; Agrawal, O. P., Riesz fractional derivatives and fractional dimensional space, Internat. J. Theoret. Phys., 49, 2, 270-275 (2010) · Zbl 1186.83068
[30] Ortigueira, M. D., Fractional central differences and derivatives, IFAC Proc. Vol., 39, 11, 58-63 (2006)
[31] Ortigueira, M. D., Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., 2006 (2006) · Zbl 1122.26007
[32] Pan, X.; Zhang, L., On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Appl. Math. Model., 36, 8, 3371-3378 (2012) · Zbl 1252.65144
[33] Pen-Yu, K., Numerical methods for incompressible viscous flow, Sci. Sinica, 20, 287-304 (1977) · Zbl 0367.76044
[34] Podlubny, I., (Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Mathematics in Science and Engineering (1999), Academic Press: Academic Press London) · Zbl 0924.34008
[35] Ran, M.; Zhang, C., A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations, Commun. Nonlinear Sci. Numer. Simul., 41, 64-83 (2016) · Zbl 1458.65112
[36] Serna-Reyes, A. J.; Macías-Díaz, J. E., Theoretical analysis of a conservative finite-difference scheme to solve a Riesz space-fractional Gross-Pitaevskii system, J. Comput. Appl. Math., 404, Article 113413 pp. (2022) · Zbl 1486.65129
[37] Shin, J.; Jeong, D.; Kim, J., A conservative numerical method for the Cahn-Hilliard equation in complex domains, J. Comput. Phys., 230, 19, 7441-7455 (2011) · Zbl 1408.65056
[38] Texier, B., Derivation of the Zakharov equations, Arch. Ration. Mech. Anal., 184, 1, 121-183 (2007) · Zbl 1370.35249
[39] Wang, P.; Huang, C., An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293, 238-251 (2015) · Zbl 1349.65346
[40] Wang, X.; Liu, F.; Chen, X., Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations, Adv. Math. Phys., 2015, Article 590435 pp. (2015) · Zbl 1380.65188
[41] Wang, J.-j.; Xiao, A.-g., An efficient conservative difference scheme for fractional Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 320, 691-709 (2018) · Zbl 1427.65189
[42] Xing, Z.; Wen, L., A conservative difference scheme for the Riesz space-fractional sine-Gordon equation, Adv. Difference Equ., 2018, 1, 1-22 (2018) · Zbl 1446.65094
[43] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 2, 190-194 (1968)
[44] Zakharov, V. E., Collapse of Langmuir waves, J. Exp. Theor. Phys., 35, 5, 908-914 (1972)
[45] Zhang, L.; Chang, Q., A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 145, 2-3, 603-612 (2003) · Zbl 1037.65092
[46] Zhu, L.; Sheng, Q., A note on the adaptive numerical solution of a Riemann-Liouville space-fractional Kawarada problem, J. Comput. Appl. Math., 374, 466-478 (2020) · Zbl 1435.65136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.