×

In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials. (English) Zbl 07582885

Summary: In this review paper, some relevant models, algorithms, and approaches conceived to describe the bone tissue mechanics and the remodeling process are showcased. Specifically, we briefly describe the hierarchical structure of the bone at different levels and underline the geometrical substructure characterizing the bone itself. The mechanical models adopted to describe the bone tissue at different levels of observation are introduced in their essential aspects. Furthermore, the modeling of the evolution, including the growth and resorption of bone, is treated by analyzing the main approaches employed, namely the mechanical feedback concept and the structural optimization perspective. In this regard, the most prominent ways to model the biomechanical stimulus are summarized. The modeling of the interaction with prostheses or grafts commonly used in reconstructive surgery is also recalled. The main aim of this survey consists thereby in providing the appropriate knowledge to mimic the deeply structured hierarchy of the bone tissue for synthesizing innovative and highly performing bio-inspired metamaterials.

MSC:

74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yu, J, Ding, R, Yang, Q, et al. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans Mechatron 2011; 17(5): 847-856.
[2] Hou, X, Jiang, L. Learning from nature: Building bio-inspired smart nanochannels. ACS Nano 2009; 3(11): 3339-3342.
[3] Lodeiro, C, Capelo, JL, Mejuto, JC, et al. Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem Soc Rev 2010; 39(8): 2948-2976.
[4] Zheng, X, Smith, W, Jackson, J, et al. Multiscale metallic metamaterials. Nat Mater 2016; 15(10): 1100-1106.
[5] Milton, G, Briane, M, Harutyunyan, D. On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math Mech Complex Syst 2017; 5(1): 41-94. · Zbl 1368.74053
[6] Weiglhofer, WS, Lakhtakia, A. Introduction to complex mediums for optics and electromagnetics. vol. 123. Bellingham, WA: SPIE Press, 2003.
[7] Barchiesi, E, Spagnuolo, M, Placidi, L. Mechanical metamaterials: A state of the art. Math Mech Solids 2019; 24(1): 212-234. · Zbl 1425.74036
[8] Florijn, B, Coulais, C, van Hecke, M. Programmable mechanical metamaterials. Phys Rev Lett 2014; 113(17): 175503.
[9] Lee, JH, Singer, JP, Thomas, EL. Micro-/nanostructured mechanical metamaterials. Adv Mater 2012; 24(36): 4782-4810.
[10] Placidi, L, Greco, L, Bucci, S, et al. A second gradient formulation for a 2D fabric sheet with inextensible fibres. Z Angew Math Phys 2016; 67(5): 114. · Zbl 1432.74034
[11] dell’Isola, F, Seppecher, P, Alibert, JJ, et al. Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mech Thermodyn 2019; 31(4): 851-884.
[12] dell’Isola, F, Seppecher, P, Spagnuolo, M, et al. Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mech Thermodyn 2019; 31(4): 1231-1282.
[13] Eremeyev, VA, Turco, E. Enriched buckling for beam-lattice metamaterials. Mech Res Commun 2020; 103: 103458.
[14] Einhorn, TA. Bone strength: The bottom line. Calcified Tissue Int 1992; 51(5): 333-339.
[15] Braidotti, P, Stagni, L. A critical damping approach for assessing the role of marrow fat on the mechanical strength of trabecular bone. Med Hypotheses 2007; 69(1): 43-46.
[16] Ji, B, Gao, H. Mechanical principles of biological nanocomposites. Annu Rev Mater Res 2010; 40: 77-100.
[17] Jia, Z, Yu, Y, Hou, S, et al. Biomimetic architected materials with improved dynamic performance. J Mech Phys Solids 2019; 125: 178-197.
[18] Lakes, R. Materials with structural hierarchy. Nature 1993; 361(6412): 511.
[19] Wegst, UGK, Bai, H, Saiz, E, et al. Bioinspired structural materials. Nat Mater 2015; 14(1): 23.
[20] Aizenberg, J, Weaver, JC, Thanawala, MS, et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 2005; 309(5732): 275-278.
[21] Sankar, S, Sharma, CS, Rath, SN, et al. Electrospun nanofibres to mimic natural hierarchical structure of tissues: Application in musculoskeletal regeneration. J Tissue Eng Regener Med 2018; 12(1): e604-e619.
[22] George, D, Spingarn, C, Dissaux, C, et al. Examples of multiscale and multiphysics numerical modeling of biological tissues. Bio-Med Mater Eng 2017; 28(S1): S15-S27.
[23] Zheng, X, Lee, H, Weisgraber, TH, et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014; 344(6190): 1373-1377.
[24] Bauer, J, Schroer, A, Schwaiger, R, et al. Approaching theoretical strength in glassy carbon nanolattices. Nat Mater 2016; 15(4): 438.
[25] Fernández-Serrano, MP, López, JC. Projecting stars, triangles and concrete: The early history of geodesics domes, from Walter Bauersfeld to Richard Buckminster Fuller. Architectura 2019; 47(1-2): 92-114.
[26] Edmondson, AC. A fuller explanation: The synergetic geometry of R. Buckminster Fuller. Boston, MA: Springer Science & Business Media, 2012.
[27] Oliva Salinas, JG, Mendoza, M, Meza, EG. Reflections on Frei Otto as mentor and promoter of sustainable architecture and his collaboration with Kenzo Tange and Ove Arup in 1969. J Int Assoc Shell Spatial Struct 2018; 59(1): 87-100.
[28] Toreno, M, Fraldi, M, Giordano, A, et al. Bubble-frame: Assessment of a new structural typology starting from the Water Cube. Nature 2011; 1: 2.
[29] Buffel, B, Desplentere, F, Bracke, K, et al. Modelling open cell-foams based on the Weaire-Phelan unit cell with a minimal surface energy approach. Int J Solids Struct 2014; 51(19-20): 3461-3470.
[30] Toohey, KS, Sottos, NR, Lewis, JA, et al. Self-healing materials with microvascular networks. Nat Mater 2007; 6(8): 581.
[31] Frost, HM. Bone “mass” and the “mechanostat”: A proposal. Anat Rec 1987; 219(1): 1-9.
[32] Weiner, S, Traub, W. Bone structure: From angstroms to microns. FASEB J 1992; 6(3): 879-885.
[33] Burr, DB, Akkus, O. Bone morphology and organization. In: Basic and applied bone biology. Amsterdam: Elsevier, 2014, 3-25.
[34] Hamed, E, Jasiuk, I. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. J Mech Behav Biomed Mate 2013; 28: 94-110.
[35] Brown, CU, Norman, TL, Kish, VL, et al. Time-dependent circumferential deformation of cortical bone upon internal radial loading. J Biomech Eng 2002; 124(4): 456-461.
[36] Olszta, MJ, Cheng, X, Jee, SS, et al. Bone structure and formation: A new perspective. Mater Sci Eng, R 2007; 58(3-5): 77-116.
[37] Michener, S, Bell, LS, Schuurman, NC, et al. A method to interpolate osteon volume designed for histological age estimation research. J Forensic Sci 2020; 35(4): 1247-1259.
[38] Burr, DB, Schaffler, MB, Frederickson, RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech 1988; 21(11): 939-941.
[39] Swartz, SM, Parker, A, Huo, C. Theoretical and empirical scaling patterns and topological homology in bone trabeculae. J Exp Biol 1998; 201(4): 573-590.
[40] Reznikov, N, Chase, H, Zvi, YB, et al. Inter-trabecular angle: A parameter of trabecular bone architecture in the human proximal femur that reveals underlying topological motifs. Acta Biomater 2016; 44: 65-72.
[41] Ben-Zvi, Y, Reznikov, N, Shahar, R, et al. 3D architecture of trabecular bone in the pig mandible and femur: Inter-trabecular angle distributions. Front Mater 2017; 4: 29.
[42] Bourne, GH. The biochemistry and physiology of bone. New York, NY: Academic Press Inc., 1956.
[43] Canè, V, Marotti, G, Volpi, G, et al. Size and density of osteocyte lacunae in different regions of long bones. Calcified Tissue Int 1982; 34(1): 558-563.
[44] Eriksen, EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 2010; 11(4): 219-227.
[45] Giraud-Guille, MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcified Tissue Int 1988; 42(3): 167-180.
[46] Weiner, S, Wagner, HD. The material bone: Structure-mechanical function relations. Annu Rev Mater Sci 1998; 28(1): 271-298.
[47] Martin, RB, Burr, DB, Sharkey, NA, et al. Skeletal tissue mechanics. New York, NY: Springer, 2015.
[48] Ascenzi, A, Bonucci, E. The compressive properties of single osteons. Anat Rec 1968; 161(3): 377-391.
[49] Segev, R. A geometrical framework for the statics of materials with microstructure. Math Models Methods Appl Sci 1994; 4(06): 871-897. · Zbl 0816.73051
[50] Ching, W, Rulis, P, Misra, A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater 2009; 5(8): 3067-3075.
[51] Lu, Y, Lekszycki, T. A novel coupled system of non-local integro-differential equations modelling Young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing. Z Angew Math Phys 2016; 67(5): 111. · Zbl 1432.74153
[52] Bednarczyk, E, Lekszycki, T. A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Z Angew Math Phys 2016; 67(4): 94. · Zbl 1432.74150
[53] Scala, I, Spingarn, C, Remond, Y, et al. Mechanically-driven bone remodeling simulation: Application to LIPUS treated rat calvarial defects. Math Mech Solids 2017; 22(10): 1976-1988. · Zbl 1386.74098
[54] Beaupré, GS, Orr, TE, Carter, DR. An approach for time-dependent bone modeling and remodeling—application: A preliminary remodeling simulation. J Orthop Res 1990; 8(5): 662-670.
[55] Huiskes, R, Weinans, HHJG, Grootenboer, HJ, et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 1987; 20(11-12): 1135-1150.
[56] Morgan, EF, Yeh, OC, Chang, WC, et al. Nonlinear behavior of trabecular bone at small strains. J Biomech Eng 2001; 123(1): 1-9.
[57] Fyhrie, DP, Carter, DR. A unifying principle relating stress to trabecular bone morphology. J Orthop Res 1986; 4(3): 304-317.
[58] Katz, JL, Meunier, A. The elastic anisotropy of bone. J Biomech 1987; 20(11-12): 1063-1070.
[59] Sansalone, V, Naili, S, Bousson, V, et al. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: From nanoscopic to organ scale. J Biomech 2010; 43(10): 1857-1863.
[60] Allena, R, Cluzel, C. Heterogeneous directions of orthotropy in three-dimensional structures: Finite element description based on diffusion equations. Math Mech Complex Syst 2018; 6(4): 339-351. · Zbl 1453.74021
[61] Cluzel, C, Allena, R. A general method for the determination of the local orthotropic directions of heterogeneous materials: Application to bone structures using \(\mu\) CT images. Math Mech Complex Syst 2018; 6(4): 353-367. · Zbl 1460.74014
[62] Peng, L, Bai, J, Zeng, X, et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 2006; 28(3): 227-233.
[63] Haire, TJ, Langton, CM. Biot theory: A review of its application to ultrasound propagation through cancellous bone. Bone 1999; 24(4): 291-295.
[64] Smit, TH, Huyghe, JM, Cowin, SC. Estimation of the poroelastic parameters of cortical bone. J Biomech 2002; 35(6): 829-835.
[65] Buchanan, JL, Gilbert, RP. Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math Comput Modell 2007; 45(3-4): 281-308. · Zbl 1170.74026
[66] Hughes, ER, Leighton, TG, White, PR, et al. Investigation of an anisotropic tortuosity in a Biot model of ultrasonic propagation in cancellous bone. J Acoust Soc Am 2007; 121(1): 568-574.
[67] Kumar, C, Jasiuk, I, Dantzig, J. Dissipation energy as a stimulus for cortical bone adaptation. J Mech Mater Struct 2011; 6(1): 303-319.
[68] Giorgio, I, Andreaus, U, Scerrato, D, et al. A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech Model Mechanobiol 2016; 15(5): 1325-1343.
[69] Giorgio, I, Andreaus, U, Scerrato, D, et al. Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Math Mech Solids 2017; 22(9): 1790-1805. · Zbl 1391.74156
[70] Cowin, SC, Nunziato, JW. Linear elastic materials with voids. J Elast 1983; 13(2): 125-147. · Zbl 0523.73008
[71] Nunziato, JW, Cowin, SC. A nonlinear theory of elastic materials with voids. Arch Ration Mech Anal 1979; 72(2): 175-201. · Zbl 0444.73018
[72] Andreaus, U, Giorgio, I, Madeo, A. Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Z Angew Math Phys 2015; 66(1): 209-237. · Zbl 1317.74064
[73] Lurie, S, Solyaev, Y, Volkov, A, et al. Bending problems in the theory of elastic materials with voids and surface effects. Math Mech Solids 2018; 23(5): 787-804. · Zbl 1395.74052
[74] Solyaev, YO, Lurie, SA, Volkov, AV. Surface effects in the theory of elastic materials with voids. In: Advanced Problems in Mechanics, 2015. · Zbl 1395.74052
[75] Biot, MA. Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 1962; 34(9A): 1254-1264.
[76] Biot, MA. General theory of three-dimensional consolidation. J Appl Phys 1941; 12(2): 155-164. · JFM 67.0837.01
[77] Detournay, E, Cheng, AHD. Fundamentals of poroelasticity. In: Hudson, JA, Fairhurst, C (eds.) Analysis and design methods (Comprehensive Rock Engineering: Principles, Practice & Projects, vol. 2). Oxford: Pergamon Press, 1993, 113-171.
[78] Cowin, SC. Bone poroelasticity. J Biomech 1999; 32(3): 217-238.
[79] Ieşan, D. Method of potentials in elastostatics of solids with double porosity. Int J Eng Sci 2015; 88: 118-127. · Zbl 1423.74096
[80] Rohan, E, Naili, S, Cimrman, R, et al. Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone. J Mech Phys Solids 2012; 60(5): 857-881.
[81] Khalili, N, Selvadurai, APS. A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys Res Lett 2003; 30(24): 2268.
[82] Cowin, S, Hegedus, D. Bone remodeling I: Theory of adaptive elasticity. J Elast 1976; 6(3): 313-326. · Zbl 0335.73028
[83] dell’Isola, F, Madeo, A, Seppecher, P. Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. Int J Solids Struct 2009; 46(17): 3150-3164. · Zbl 1167.74393
[84] Placidi, L, dell’Isola, F, Ianiro, N, et al. Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur J Mech A Solids 2008; 27(4): 582-606. · Zbl 1146.74012
[85] Lekszycki, T, dell’Isola, F. A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Z Angew Math Mech 2012; 92(6): 426-444. · Zbl 1241.92010
[86] Park, HC, Lakes, RS. Cosserat micromechanics of human bone: Strain redistribution by a hydration sensitive constituent. J Biomech 1986; 19(5): 385-397.
[87] Buechner, PM, Lakes, RS. Size effects in the elasticity and viscoelasticity of bone. Biomech Model Mechanobiol 2003; 1(4): 295-301.
[88] Fatemi, J, Onck, PR, Poort, G, et al. Cosserat moduli of anisotropic cancellous bone: A micromechanical analysis. J Phys IV 2003; 105: 273-280.
[89] Eremeyev, VA, Skrzat, A, Vinakurava, A. Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction. Strength Mater 2016; 48(4): 573-582.
[90] Eremeyev, VA, Skrzat, A, Stachowicz, F. Linear micropolar elasticity analysis of stresses in bones under static loads. Strength Mater 2017; 49(4): 575-585.
[91] Mindlin, RD. Stress functions for a Cosserat continuum. Int J Solids Struct 1965; 1(3): 265-271.
[92] Eremeyev, VA, Pietraszkiewicz, W. Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 2012; 49(14): 1993-2005.
[93] Eremeyev, VA, Pietraszkiewicz, W. Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 2016; 21(2): 210-221. · Zbl 1332.74003
[94] Goda, I, Assidi, M, Ganghoffer, JF. Cosserat 3D anisotropic models of trabecular bone from the homogenisation of the trabecular structure. Comput Methods Biomech Biomed Eng 2012; 15(S1): 288-290.
[95] Goda, I, Assidi, M, Belouettar, S, et al. A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J Mech Behav Biomed Mater 2012; 16: 87-108.
[96] Goda, I, Assidi, M, Ganghoffer, JF. A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol 2014; 13(1): 53-83.
[97] Ramézani, H, El-Hraiech, A, Jeong, J, et al. Size effect method application for modeling of human cancellous bone using geometrically exact Cosserat elasticity. Comput Methods in Appl Mech Eng 2012; 237: 227-243.
[98] Eugster, S, dell-Isola, F, Steigmann, D, et al. Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math Mech Complex Syst 2019; 7(1): 75-98. · Zbl 1428.74004
[99] Onck, PR. Cosserat modeling of cellular solids. CR Mec 2002; 330(11): 717-722. · Zbl 1177.74318
[100] Mindlin, RD. Micro-structure in linear elasticity. Arch Ration Mech Anal 1964; 16(1): 51-78. · Zbl 0119.40302
[101] Toupin, RA. Elastic materials with couple-stresses. Arch Ration Mech Anal 1962; 11(1): 385-414. · Zbl 0112.16805
[102] Pideri, C, Seppecher, P. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech Thermodyn 1997; 9(5): 241-257. · Zbl 0893.73006
[103] Abdoul-Anziz, H, Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices. Math Mech Complex Syst 2018; 6(3): 213-250. · Zbl 1403.35028
[104] Madeo, A, dell’Isola, F, Darve, F. A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J Mech Phys Solids 2013; 61(11): 2196-2211.
[105] Lurie, S, Belov, P, Tuchkova, N. Gradient theory of media with conserved dislocations: Application to microstructured materials. In: Maugin, GA, Metrikine, AV (eds.) Mechanics of generalized continua: One hundred years after the Cosserats (Advances in Mechanics and Mathematics, vol. 21). New York, NY: Springer, 2010, 223-232. · Zbl 1396.74022
[106] Gusev, AA, Lurie, SA. Symmetry conditions in strain gradient elasticity. Math Mech Solids 2017; 22(4): 683-691. · Zbl 1371.74049
[107] dell’Isola, F, Cuomo, M, Greco, L, et al. Bias extension test for pantographic sheets: Numerical simulations based on second gradient shear energies. J Eng Math 2017; 103(1): 127-157. · Zbl 1390.74028
[108] Madeo, A, George, D, Lekszycki, T, et al. A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. CR Mec 2012; 340(8): 575-589.
[109] Giorgio, I, Andreaus, U, dell’Isola, F, et al. Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech Lett 2017; 13: 141-147.
[110] Ganghoffer, JF, Rahouadj, R, Boisse, J, et al. A phase field approach for bone remodeling based on a second-gradient model. Mech Res Commun 2019; 96: 37-44.
[111] Nguyen, VD, Noels, L. Computational homogenization of cellular materials. Int J Solids Struct 2014; 51(11-12): 2183-2203.
[112] Gazzo, S, Cuomo, M, Boutin, C, et al. Directional properties of fibre network materials evaluated by means of discrete homogenization. Eur J Mech A Solids 2020; 82: 104009. · Zbl 1472.74185
[113] dell’Isola, F, Sciarra, G, Vidoli, S. Generalized Hooke’s law for isotropic second gradient materials. Proc R Soc London, Ser A 2009; 465: 2177-2196. · Zbl 1186.74019
[114] dell’Isola, F, Seppecher, P, Della Corte, A. The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: A review of existing results. Proc R Soc London, Ser A 2015; 471(2183): 20150415. · Zbl 1371.82032
[115] Cazzani, A, Malagù, M, Turco, E. Isogeometric analysis of plane-curved beams. Math Mech Solids 2016; 21(5): 562-577. · Zbl 1370.74084
[116] Cazzani, A, Malagù, M, Turco, E, et al. Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids 2016; 21(2): 182-209. · Zbl 1333.74051
[117] Cuomo, M, Contrafatto, L, Greco, L. A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 2014; 80: 173-188. · Zbl 1423.74055
[118] Greco, L, Cuomo, M. An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput Methods Appl Mech Eng 2016; 298: 325-349. · Zbl 1425.74259
[119] Balobanov, V, Niiranen, J. Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput Methods Appl Mech Eng 2018; 339: 137-159. · Zbl 1440.74179
[120] Ruimerman, R, Hilbers, P, Van Rietbergen, B, et al. A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 2005; 38(4): 931-941.
[121] Ruimerman, R, Van Rietbergen, B, Hilbers, P, et al. The effects of trabecular-bone loading variables on the surface signaling potential for bone remodeling and adaptation. Ann Biomed Eng 2005; 33(1): 71-78.
[122] Spingarn, C, Wagner, D, Remond, Y, et al. Multiphysics of bone remodeling: A 2D mesoscale activation simulation. Bio-Med Mater Eng 2017; 28(S1): S153-S158.
[123] Van Oers, RFM, Ruimerman, R, Tanck, E, et al. A unified theory for osteonal and hemi-osteonal remodeling. Bone 2008; 42(2): 250-259.
[124] Bagherian, A, Baghani, M, George, D, et al. A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images. Continuum Mech Thermodyn 2020; 32: 927-943.
[125] Sheidaei, A, Kazempour, M, Hasanabadi, A, et al. Influence of bone microstructure distribution on developed mechanical energy for bone remodeling using a statistical reconstruction method. Math Mech Solids 2019; 24(10): 3027-3041. · Zbl 07273351
[126] Hambli, R, Katerchi, H, Benhamou, CL. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol 2011; 10(1): 133-145.
[127] McNamara, LM, Prendergast, PJ. Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 2007; 40(6): 1381-1391.
[128] Nowak, M, Sokołowski, J, Żochowski, A. Justification of a certain algorithm for shape optimization in 3D elasticity. Struct Multidiscip Optim 2018; 57(2): 721-734.
[129] Nowak, M, Sokołowski, J, Żochowski, A. Biomimetic approach to compliance optimization and multiple load cases. J Optim Theory Appl 2020; 184: 210-225. · Zbl 1432.74184
[130] Louna, Z, Goda, I, Ganghoffer, JF. Homogenized strain gradient remodeling model for trabecular bone microstructures. Continuum Mech Thermodyn 2019; 31: 1339-1367.
[131] Franciosi, P, Spagnuolo, M, Salman, OU. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mech Thermodyn 2019; 31(1): 101-132.
[132] Spagnuolo, M, Franciosi, P, dell’Isola, F. A Green operator-based elastic modeling for two-phase pantographic-inspired bi-continuous materials. Int J Solids Struct 2020; 188: 282-308.
[133] You, L, Cowin, SC, Schaffler, MB, et al. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech 2001; 34(11): 1375-1386.
[134] Hambli, R, Kourta, A. A theory for internal bone remodeling based on interstitial fluid velocity stimulus function. Appl Math Modell 2015; 39(12): 3525-3534. · Zbl 1443.92053
[135] Hambli, R, Almitani, KH, Chamekh, A, et al. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study. Math Biosci 2015; 262: 46-55. · Zbl 1315.92019
[136] Wolff, J. Das Gesetz der Transformation der Knochen—The law of bone remodelling. Berlin: Springer-Verlag von August Hirschwald, 1892.
[137] Wolff, J. The law of bone remodelling. Berlin: Springer Science & Business Media, 2012.
[138] Meyer, GH. Die Architektur der Spongiosa. Arch Anat Physiol Wiss Med 1867; 34: 615-628.
[139] Culmann, C. Die graphische statik. Zurich: Meyer & Zeller, 1866. · JFM 07.0516.02
[140] Lee, TC, Taylor, D. Bone remodelling: Should we cry Wolff? Ir J Med Sci 1999; 168(2): 102.
[141] Ruff, C, Holt, B, Trinkaus, E. Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol 2006; 129(4): 484-498.
[142] Roesler, H. The history of some fundamental concepts in bone biomechanics. J Biomech 1987; 20(11): 1025-1034.
[143] Roux, W. Der Kampf der Theile im Organismus: Ein Beitrag zur Vervollständigung der mechanischen Zweckmässigkitslehre. Leipzig: W. Engelmann, 1881.
[144] Roux, W. Beitrage zur Morphologie der funktionellen Anpassung. Arch Anat Physiol Anat Abt 1885; 120-185.
[145] Carter, DR, Fyhrie, DP, Whalen, RT. Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy. J Biomech 1987; 20(8): 785-794.
[146] Carter, DR, Orr, TE, Fyhrie, DP. Relationships between loading history and femoral cancellous bone architecture. J Biomech 1989; 22(3): 231-244.
[147] Beaupré, GS, Orr, TE, Carter, DR. An approach for time-dependent bone modeling and remodeling—theoretical development. J Orthop Res 1990; 8(5): 651-661.
[148] Jacobs, CR, Simo, JC, Beaupré, GS, et al. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J Biomech 1997; 30(6): 603-613.
[149] Turner, CH. Toward a mathematical description of bone biology: The principle of cellular accommodation. Calcified Tissue Int 1999; 65(6): 466-471.
[150] Cowin, SC, Firoozbakhsh, K. Bone remodeling of diaphysial surfaces under constant load: Theoretical predictions. J Biomech 1981; 14(7): 471-484.
[151] Luo, G, Cowin, SC, Sadegh, AM, et al. Implementation of strain rate as a bone remodeling stimulus. J Biomech Eng 1995; 117(3): 329-338.
[152] Terrier, A, Miyagaki, J, Fujie, H, et al. Delay of intracortical bone remodelling following a stress change: A theoretical and experimental study. Clin Biomech 2005; 20(9): 998-1006.
[153] Lad, SE, Daegling, DJ, McGraw, WS. Bone remodeling is reduced in high stress regions of the cercopithecoid mandible. Am J Phys Anthropol 2016; 161(3): 426-435.
[154] Sansalone, V, Naili, S, Di Carlo, A. On the rotary remodelling equilibrium of bone. Comput Methods Biomech Biomed Eng 2011; 14(S1): 203-204.
[155] Cowin, SC, Doty, SB. Tissue mechanics. New York, NY: Springer Science & Business Media, 2007. · Zbl 1117.74002
[156] Huiskes, R. If bone is the answer, then what is the question? J Anat 2000; 197(2): 145-156.
[157] Den Buijs, JO, Dragomir-Daescu, D. Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density. Comput Methods Programs Biomed 2011; 104(2): 168-174.
[158] Sarve, H, Lindblad, J, Borgefors, G, et al. Extracting 3D information on bone remodeling in the proximity of titanium implants in SR \(\mu\) CT image volumes. Comput Methods Programs Biomed 2011; 102(1): 25-34.
[159] Andreaus, U, Colloca, M, Toscano, A. Mechanical behaviour of a prosthesized human femur: A comparative analysis between walking and stair climbing by using the finite element method. Biophys Bioeng Lett 2008; 1(3). https://ojs.uniroma1.it/index.php/CISB-BBL/article/view/2774/2769
[160] Andreaus, U, Colloca, M. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method. Proc Inst Mech Eng H 2009; 223(5): 589-605.
[161] Mullender, MG, Huiskes, R. Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 1995; 13(4): 503-512.
[162] Turner, CH. Homeostatic control of bone structure: An application of feedback theory. Bone 1991; 12(3): 203-217.
[163] Lekszycki, T. Functional adaptation of bone as an optimal control problem. J Theor Appl Mech 2005; 43(3): 555-574.
[164] Cyron, CJ, Aydin, RC. Mechanobiological free energy: A variational approach to tensional homeostasis in tissue equivalents. Z Angew Math Mech 2017; 97(9): 1011-1019. · Zbl 07775396
[165] Mayr, O. The origins of feedback control. Sci Am 1970; 223(4): 110-119. · Zbl 0243.93001
[166] Mullender, MG, Huiskes, R, Weinans, H. A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech 1994; 27(11): 1389-1394.
[167] Weinans, H, Huiskes, R, Grootenboer, HJ. The behavior of adaptive bone-remodeling simulation models. J Biomech 1992; 25(12): 1425-1441.
[168] Braeu, FA, Seitz, A, Aydin, RC, et al. Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomech Model Mechanobiol 2017; 16(3): 889-906.
[169] Schnermann, J, Stowe, N, Yarimizu, S, et al. Feedback control of glomerular filtration rate in isolated, blood-perfused dog kidneys. Am J Physiol Renal Physiol 1977; 233(3): F217-F224.
[170] Ríos, E, Stern, MD. Calcium in close quarters: Microdomain feedback in excitation-contraction coupling and other cell biological phenomena. Annu Rev Biophys Biomol Struct 1997; 26(1): 47-82.
[171] Rodan, GA. Bone homeostasis. Proc Natl Acad Sci USA 1998; 95(23): 13361-13362.
[172] Rubin, CT, Lanyon, LE. Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. J Orthop Res 1987; 5(2): 300-310.
[173] Turner, CH. Three rules for bone adaptation to mechanical stimuli. Bone 1998; 23(5): 399-407.
[174] Andreaus, U, Colloca, M, Iacoviello, D. Modeling of trabecular architecture as result of an optimal control procedure. In: Andreaus, U, Iacoviello, D (eds.) Biomedical imaging and computational modeling in biomechanics (Lecture Notes in Computational Vision and Biomechanics, vol. 4). Dordrecht: Springer, 2013, 19-37.
[175] Martin, RB. Porosity and specific surface of bone. Crit Rev Biomed Eng 1984; 10(3): 179-222.
[176] Lu, Y, Lekszycki, T. Modelling of bone fracture healing: Influence of gap size and angiogenesis into bioresorbable bone substitute. Math Mech Solids 2017; 22(10): 1997-2010. · Zbl 1386.74097
[177] George, D, Allena, R, Remond, Y. A multiphysics stimulus for continuum mechanics bone remodeling. Math Mech Complex Syst 2018; 6(4): 307-319. · Zbl 1422.65295
[178] George, D, Allena, R, Bourzac, C, et al. A new comprehensive approach for bone remodeling under medium and high mechanical load based on cellular activity. Math Mech Complex Syst 2020; 8(4): 287-306. · Zbl 1473.92008
[179] Bersani, AM, Bersani, E, Dell’Acqua, G, et al. New trends and perspectives in nonlinear intracellular dynamics: One century from Michaelis-Menten paper. Continuum Mech Thermodyn 2015; 27(4-5): 659-684. · Zbl 1341.92020
[180] Coluzzi, B, Bersani, AM, Bersani, E. An alternative approach to Michaelis-Menten kinetics that is based on the renormalization group. Math Biosci 2018; 299: 28-50. · Zbl 1393.92017
[181] Li, J, Li, H, Shi, L, et al. A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent Mat 2007; 23(9): 1073-1078.
[182] Miller, Z, Fuchs, MB, Arcan, M. Trabecular bone adaptation with an orthotropic material model. J Biomech 2002; 35(2): 247-256.
[183] Tovar, A, Patel, NM, Niebur, GL, et al. Topology optimization using a hybrid cellular automaton method with local control rules. J Mech Des 2006; 128(6): 1205-1216.
[184] Tovar, A. Bone remodeling as a hybrid cellular automaton optimization process. PhD Thesis, University of Notre Dame, Notre Dame, IN, USA, 2004.
[185] Tovar, A, Patel, NM, Kaushik, AK, et al. Optimality conditions of the hybrid cellular automata for structural optimization. AIAA J 2007; 45(3): 673-683.
[186] Frost, HM. The laws of bone structure. Springfield, IL: Charles C Thomas, 1964.
[187] Prendergast, PJ, Taylor, D. Prediction of bone adaptation using damage accumulation. J Biomech 1994; 27(8): 1067-1076.
[188] Kummer, BKE . Biomechanics of bone: Mechanical properties, functional structure, functional adaptation. In: Fung, Y-C, Perrone, N, Anliker, M (eds.) Biomechanics: Its foundations and objectives. Englewood Cliffs, NJ: Prentice-Hall, 1972, 237-271.
[189] Zioupos, P, Currey, JD, Mirza, MS, et al. Experimentally determined microcracking around a circular hole in a flat plate of bone: Comparison with predicted stresses. Philos Trans R Soc London, Ser B 1995; 347(1322): 383-396.
[190] Terrier, A, Rakotomanana, RL, Ramaniraka, AN, et al. Adaptation models of anisotropic bone. Comput Methods Biomech Biomed Eng 1997; 1(1): 47-59.
[191] Terrier, A, Rakotomanana, L, Leyvraz, F. Effect of loading history on short-term bone adaptation after total hip arthroplasty. Comput Methods Biomech Biomed Eng 1998; 2(CONF): 115-122.
[192] Placidi, L, Barchiesi, E, Misra, A. A strain gradient variational approach to damage: A comparison with damage gradient models and numerical results. Math Mech Complex Syst 2018; 6(2): 77-100. · Zbl 1452.74019
[193] Placidi, L, Misra, A, Barchiesi, E. Two-dimensional strain gradient damage modeling: A variational approach. Z Angew Math Phys 2018; 69(3): 56. · Zbl 1393.74168
[194] Placidi, L, Misra, A, Barchiesi, E. Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech Thermodyn 2019; 31: 1143-1163.
[195] Placidi, L, Barchiesi, E. Energy approach to brittle fracture in strain-gradient modelling. Proc R Soc London, Ser A 2018; 474(2210): 20170878. · Zbl 1402.74094
[196] Chaboche, JL. Continuous damage mechanics—a tool to describe phenomena before crack initiation. Nucl Eng Des 1981; 64(2): 233-247.
[197] George, D, Allena, R, Remond, Y. Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction. Continuum Mech Thermodyn 2019; 31(3): 725-740.
[198] Giorgio, I, dell’Isola, F, Andreaus, U, et al. On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomech Model Mechanobiol 2019; 18(6): 1639-1663.
[199] Hernandez-Rodriguez, Y, Lekszycki, T. Novel description of bone remodelling including finite memory effect, stimulation and signalling mechanisms. Continuum Mech Thermodyn. Epub ahead of print 28 March 2020. DOI: 10.1007/s00161-020-00882-4.
[200] dell’Isola, F, Andreaus, U, Placidi, L. At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 2015; 20(8): 887-928. · Zbl 1330.74006
[201] Javili, A, Morasata, R, Oterkus, E, et al. Peridynamics review. Math Mech Solids 2019; 24(11): 3714-3739. · Zbl 07273389
[202] Andreaus, U, Colloca, M, Iacoviello, D, et al. Optimal-tuning PID control of adaptive materials for structural efficiency. Struct Multidiscip Optim 2011; 43(1): 43-59.
[203] Andreaus, U, Colloca, M, Iacoviello, D. An optimal control procedure for bone adaptation under mechanical stimulus. Control Eng Pract 2012; 20(6): 575-583.
[204] Andreaus, U, Colloca, M, Iacoviello, D. Optimal bone density distributions: Numerical analysis of the osteocyte spatial influence in bone remodeling. Comput Methods Programs Biomed 2014; 113(1): 80-91.
[205] Bourgery, JM. Traité complet de l’anatomie de l’homme comprenant la médecine opératoire. Paris: CA Delaunay, 1832.
[206] Bagge, M. A model of bone adaptation as an optimization process. J Biomech 2000; 33(11): 1349-1357.
[207] Jang, IG, Kim, IY. Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 2008; 41(11): 2353-2361.
[208] Lekszycki, T. Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 2002; 37(4-5): 343-354. · Zbl 1141.74345
[209] Lu, Y, Lekszycki, T. Modeling of an initial stage of bone fracture healing. Continuum Mech Thermodyn 2015; 27(4-5): 851-859. · Zbl 1341.74124
[210] Andreaus, U, Giorgio, I, Lekszycki, T. A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Z Angew Math Mech 2014; 94(12): 978-1000. · Zbl 1303.74029
[211] Giorgio, I, Andreaus, U, Lekszycki, T, et al. The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math Mech Solids 2017; 22(5): 969-987. · Zbl 1371.74209
[212] Giorgio, I, Andreaus, U, Madeo, A. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech Thermodyn 2016; 28(1-2): 21-40. · Zbl 1348.74242
[213] Dissaux, C, Wagner, D, George, D, et al. Mechanical impairment on alveolar bone graft: A literature review. J Craniomaxillofac Surg 2019; 47(1): 149-157.
[214] Yildizdag, ME, Tran, CA, Barchiesi, E, et al. A multi-disciplinary approach for mechanical metamaterial synthesis: A hierarchical modular multiscale cellular structure paradigm. In: Altenbach, H, Öchsner, A (eds.) State of the art and future trends in material modeling (Advanced Structural Materials, vol. 100). Cham: Springer, 2019, 485-505.
[215] Desmorat, B, Spagnuolo, M, Turco, E. Stiffness optimization in nonlinear pantographic structures. Math Mech Solids 2020; 25(12): 2252-2262. · Zbl 1482.74143
[216] Abali, BE. Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation. Continuum Mech Thermodyn 2019; 31(4): 885-894.
[217] Yang, H, Abali, BE, Timofeev, D, et al. Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Continuum Mech Thermodyn 2020; 32: 1251-1270.
[218] Ciallella, A. Research perspective on multiphysics and multiscale materials: A paradigmatic case. Continuum Mech Thermodyn 2020; 32: 527-639.
[219] Laudato, M, Ciallella, A. Perspectives in generalized continua. In: Abali, B, Giorgio, I (eds.) Developments and novel approaches in biomechanics and metamaterials (Advanced Structured Materials, vol. 132). Cham: Springer, 2020, 1-13.
[220] Vangelatos, Z, Komvopoulos, K, Grigoropoulos, CP. Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Math Mech Solids 2019; 24(2): 511-524. · Zbl 1447.74034
[221] Alibert, JJ, Seppecher, P, dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 2003; 8(1): 51-73. · Zbl 1039.74028
[222] De Angelo, M, Placidi, L, Nejadsadeghi, N, et al. Non-standard Timoshenko beam model for chiral metamaterial: Identification of stiffness parameters. Mech Res Commun 2020; 103: 103462.
[223] Casalotti, A, D’Annibale, F, Rosi, G. Multi-scale design of an architected composite structure with optimized graded properties. Compos Struct 2020; 252: 112608.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.