×

Local material symmetry group for first- and second-order strain gradient fluids. (English) Zbl 07582892

Summary: Using an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients. Both models found applications to modeling of materials with complex inner structure such as beam-lattice metamaterials and fluids at small scales. The local material symmetry group is formed through such transformations of a reference placement which cannot be experimentally detected within the considered material model. We show that considering maximal symmetry group, i.e. material with strain energy that is independent of the choice of a reference placement, one comes to the constitutive equations of gradient fluids introduced independently on general strain gradient continua.

MSC:

74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kachanov, ML, Shafiro, B, Tsukrov, I. Handbook of Elasticity Solutions. Springer Science & Business Media, 2013.
[2] Lurie, AI. Theory of Elasticity. 4th ed. Berlin: Springer, 2005.
[3] Nye, JF. Physical Properties of Crystals. Their Representation by Tensors and Matrices. Oxford: Clarendon Press, 1957. · Zbl 0079.22601
[4] Chatterjee, SK. Crystallography and the World of Symmetry. Berlin: Springer, 2008. · Zbl 1154.82031
[5] Olver, PJ. Conservation laws in elasticity. I. General results. Arch Rat Mech Anal 1984; 85: 111-129. · Zbl 0559.73019
[6] Olver, PJ. Conservation laws in elasticity. II. Linear homogeneous isotropic elastostatics. Arch Rat Mech Anal 1984; 85(2): 131-160. · Zbl 0582.73024
[7] Kienzler, R, Herrmann, G. Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Berlin: Springer, 2000. · Zbl 0954.74001
[8] Noll, W. A mathematical theory of the mechanical behavior of continuous media. Arch Rat Mech Anal 1958; 2(1): 197-226. · Zbl 0083.39303
[9] Wang, CC. A general theory of subfluids. Arch Rat Mech Anal 1965; 20(1): 1-40. · Zbl 0139.43801
[10] Truesdell, C, Noll, W. The Non-linear Field Theories of Mechanics. 3rd ed. Berlin: Springer, 2004. · Zbl 1068.74002
[11] de Gennes, PG, Prost, J. The Physics of Liquid Crystals. 2nd ed. Oxford: Clarendon Press, 1993.
[12] Chandrasekhar, S. Liquid Crystals. Cambridge: Cambridge University Press, 1977. · Zbl 0364.90001
[13] Eringen, AC, Kafadar, CB. Polar field theories. In Eringen, AC (ed.) Continuum Physics, Vol. IV, pp. 1-75. New York: Academic Press, 1976.
[14] Eringen, AC. Microcontinuum Field Theory. I. Foundations and Solids. New York: Springer, 1999. · Zbl 0953.74002
[15] Pietraszkiewicz, W, Eremeyev, VA. On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 2009; 46(3-4): 774-787. · Zbl 1215.74004
[16] Eremeyev, VA, Pietraszkiewicz, W. Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 2012; 49(14): 1993-2005.
[17] Eremeyev, VA, Pietraszkiewicz, W. Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 2016; 21(2): 210-221. · Zbl 1332.74003
[18] Eremeyev, VA, Konopińska-Zmysłowska, V. On dynamic extension of a local material symmetry group for micropolar media. Symmetry 2020; 12(10): 1632. · Zbl 1467.74058
[19] Eremeyev, VA. On the material symmetry group for micromorphic media with applications to granular materials. Mech Res Commun 2018; 94: 8-12.
[20] Murdoch, AI, Cohen, H. Symmetry considerations for material surfaces. Arch Rat Mech Anal 1979; 72(1): 61-98. · Zbl 0424.73063
[21] Murdoch, AI. Symmetry considerations for materials of second grade. J Elasticity 1979; 9(1): 43-50. · Zbl 0395.73001
[22] Elżanowski, M, Epstein, M. The symmetry group of second-grade materials. Int J Non-Lin Mech 1992; 27(4): 635-638. · Zbl 0825.73026
[23] Reiher, JC, Bertram, A. Finite third-order gradient elasticity and thermoelasticity. J Elasticity 2018; 133(2): 223-252. · Zbl 1451.74026
[24] Auffray, N, Le Quang, H, He, QC. Matrix representations for 3D strain-gradient elasticity. J Mech Phys Solids 2013; 61(5): 1202-1223. · Zbl 1260.74012
[25] Auffray, N, Dirrenberger, J, Rosi, G. A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int J Solids Struct 2015; 69: 195-206.
[26] Auffray, N, He, QC, Le Quang, H. Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity. Int J Solids Struct 2019; 159: 197-210.
[27] Auffray, N, Abdoul-Anziz, H, Desmorat, B. Explicit harmonic structure of bidimensional linear strain-gradient elasticity. Eur J Mech A Solids 2021; 87: 104202. · Zbl 1485.74008
[28] Fleck, NA, Deshpande, VS, Ashby, MF. Micro-architectured materials: Past, present and future. Proc R Soc A Math Phys Eng Sci 2010; 466(2121): 2495-2516.
[29] Phani, AS, Hussein, MI. Dynamics of Lattice Materials. Chichester: John Wiley & Sons, Inc., 2017.
[30] Gibson, LJ, Ashby, MF. Cellular Solids: Structure and Properties. 2nd ed. ( Cambridge Solid State Science Series). Cambridge: Cambridge University Press, 1997. · Zbl 0723.73004
[31] dell’Isola, F, Steigmann, D. A two-dimensional gradient-elasticity theory for woven fabrics. J Elasticity 2015; 118(1): 113-125. · Zbl 1305.74024
[32] Rahali, Y, Giorgio, I, Ganghoffer, JF, et al. Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 2015; 97: 148-172. · Zbl 1423.74794
[33] Cuomo, M, dell’Isola, F, Greco, L, et al. First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities. Composites B Eng 2017; 115: 423-448.
[34] Abdoul-Anziz, H, Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices. Math Mech Complex Syst 2018; 6(3): 213-250. · Zbl 1403.35028
[35] dell’Isola, F, Seppecher, P, Alibert, JJ, et al. Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mech Thermodyn 2019; 31(4): 851-884.
[36] Rizzi, G, Dal Corso, F, Veber, D, et al. Identification of second-gradient elastic materials from planar hexagonal lattices. Part I: Analytical derivation of equivalent constitutive tensors. Int J Solids Struct 2019; 176: 1-18.
[37] Rizzi, G, Dal Corso, F, Veber, D, et al. Identification of second-gradient elastic materials from planar hexagonal lattices. Part II: Mechanical characteristics and model validation. Int J Solids Struct 2019; 176: 19-35.
[38] dell’Isola, F, Steigmann, DJ. Discrete and Continuum Models for Complex Metamaterials. Cambridge: Cambridge University Press, 2020.
[39] Mawassy, N, Reda, H, Ganghoffer, JF, et al. A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media. Int J Eng Sci 2021; 158: 103410. · Zbl 07278798
[40] Toupin, RA. Elastic materials with couple-stresses. Arch Rat Mech Anal 1962; 11(1): 385-414. · Zbl 0112.16805
[41] Toupin, RA. Theories of elasticity with couple-stress. Arch Rat Mech Anal 1964; 17(2): 85-112. · Zbl 0131.22001
[42] Mindlin, RD. Micro-structure in linear elasticity. Arch Rat Mech Anal 1964; 16(1): 51-78. · Zbl 0119.40302
[43] Mindlin, RD. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1965; 1(4): 417-438.
[44] Mindlin, RD, Eshel, NN. On first strain-gradient theories in linear elasticity. Int J Solids Struct 1968; 4(1): 109-124. · Zbl 0166.20601
[45] Forest, S, Cordero, NM, Busso, EP. First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Computat Mater Sci 2011; 50(4): 1299-1304.
[46] Cordero, NM, Forest, S, Busso, EP. Second strain gradient elasticity of nano-objects. J Mech Phys Solids 2016; 97: 92-124.
[47] Bertram, A, Forest, S (eds.) Mechanics of Strain Gradient Materials. Cham: Springer, 2020.
[48] van der Waals, JD . The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (English translation by J. S. Rowlinson). J Statist Phys 1893; 20: 200-244. · Zbl 1245.82006
[49] Korteweg, DJ. Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité. Arch Néerland Sci Exact Nat 1901; Sér. II(6): 1-24. · JFM 32.0756.02
[50] Rowlinson, JS, Widom, B. Molecular Theory of Capillarity. New York: Dover, 2003.
[51] Gouin, H. Une interprétation moléculaire des fluides thermocapillaires. C R Acad Sci Sér 2 Méc Phys Chim Sci Univ Sci Terre 1988; 306(12): 755-759.
[52] Cahn, JW, Hilliard, JE. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 1958; 28(2): 258-267. · Zbl 1431.35066
[53] Cahn, JW, Hilliard, JE. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J Chem Phys 1959; 31(3): 688-699.
[54] Casal, P, Gouin, H. A representation of liquid-vapour interfaces by using fluids of second grade. Annales de Physique 1988; 13(Suppl. 3): 3-12.
[55] Seppecher, P. Les Fluides de Cahn-Hilliard. Mémoire d’habilitation à diriger des recherches, Université du Sud Toulon, 1996.
[56] Seppecher, P. Second-gradient theory: application to Cahn-Hilliard fluids. In: Continuum Thermomechanics, pp. 379-388. Berlin: Springer, 2000.
[57] dell’Isola, F, Gouin, H, Seppecher, P, et al. Radius and surface tension of microscopic bubbles by second gradient theory. C R Acad Sci Sér IIB Méc Phys Chim Astron 1995; 320: 211-216. · Zbl 0833.76004
[58] Rosi, G, Giorgio, I, Eremeyev, VA. Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM 2013; 93(12): 914-927.
[59] Gurtin, ME, Vianello, M, Williams, WO. On fluids of grade \(n\). Meccanica 1986; 21(4): 179-183. · Zbl 0626.76010
[60] Casal, P, Gouin, H. Invariance properties of inviscid fluids of grade \(n\). In: PDEs and Continuum Models of Phase Transitions, pp. 85-98. Berlin: Springer, 1989. · Zbl 0991.76516
[61] Gouin, H. Thermodynamic form of the equation of motion for perfect fluids of grade \(n\). C R Acad Sci Sér II 1987; 305(II): 833-838. · Zbl 0621.76003
[62] Podio-Guidugli, P, Vianello, M. On a stress-power-based characterization of second-gradient elastic fluids. Continuum Mech Thermodyn 2013; 25(2-4): 399-421. · Zbl 1343.76002
[63] Bertram, A. On viscous gradient fluids. Continuum Mech Thermodyn 2020; 32: 1385-1401.
[64] Milton, GW, Cherkaev, AV. Which elasticity tensors are realizable? J Eng Mater Technol 1995; 117(4): 483-493.
[65] Pendry, JB, Li, J. An acoustic metafluid: realizing a broadband acoustic cloak. New J Phys 2008; 10(11): 115032.
[66] Kadic, M, Bückmann, T, Stenger, N, et al. On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 2012; 100(19): 191901.
[67] Askari, M, Hutchins, DA, Thomas, PJ, et al. Additive manufacturing of metamaterials: A review. Additive Manuf 2020; 36: 101562.
[68] Bertram, A. Compendium on Gradient Materials Including Solids and Fluids. 4th ed. Berlin: TU Berlin, 2019.
[69] Gurtin, ME. Topics in Finite Elasticity. Philadelphia, PA: SIAM, 1983. · Zbl 0486.73030
[70] Lurie, AI. Non-linear Theory of Elasticity. Amsterdam: North-Holland, 1990. · Zbl 0715.73017
[71] Simmonds, JG. A Brief on Tensor Analysis. 2nd ed. New York: Springer, 1994. · Zbl 0790.53014
[72] Eremeyev, VA, Cloud, MJ, Lebedev, LP. Applications of Tensor Analysis in Continuum Mechanics. Hackensack, NJ: World Scientific, 2018. · Zbl 1471.74001
[73] Wilson, EB. Vector Analysis, Founded upon the Lectures of G. W. Gibbs. New Haven, CT: Yale University Press, 1901.
[74] Spencer, AJM . Theory of invariants. In: Eringen, AC (ed.) Continuum Physics, Vol. 1, pp. 239-353. New York: Academic Press, 1971.
[75] Zheng, QS. Theory of representations for tensor functions – a unified invariant approach to constitutive equations. Appl Mech Rev 1994; 47(11): 545-587. · Zbl 0999.74500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.