×

A numerical investigation on impulse-induced nonlinear longitudinal waves in pantographic beams. (English) Zbl 07590412

Summary: This contribution presents the results of a campaign of numerical simulations aimed at better understanding the propagation of longitudinal waves in pantographic beams within the large-deformation regime. Initially, we recall the key features of a Lagrangian discrete spring model, which was introduced in previous works and that was tested extensively as capable of accurately forecasting the mechanical response of structures based on the pantographic motif, both in statics and dynamics. Successively, a stepwise integration scheme used to solve equations of motions is briefly discussed. The key content of the present contribution concerns the thorough presentation of some selected numerical simulations, which focus in particular on the propagation of stretch profiles induced by impulsive loads. The study takes into account different tests, by varying the number of unit cells, i.e., the total length of the system, spring stiffnesses, the shape of the impulse, as well as its properties such as duration and peak amplitude, and boundary conditions. Some conjectures about the form of traveling waves are formulated, to be confirmed by both further numerical simulations and analytical investigations.

MSC:

74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alibert, JJ, Seppecher, P, dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 2003; 8(1): 51-73. · Zbl 1039.74028
[2] dell’Isola, F, Seppecher, P, Spagnuolo, M, et al. Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mech Thermodyn 2019; 31(4): 1231-1282.
[3] dell’Isola, F, Seppecher, P, Alibert, JJ, et al. Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mech Thermodyn 2019; 31(4): 851-884.
[4] Placidi, L, Barchiesi, E, Turco, E, et al. A review on 2D models for the description of pantographic fabrics. Z angew Math Phys 2016; 67(121): 1-20. · Zbl 1359.74019
[5] Barchiesi, E, Placidi, L. A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In Sumbatyan, MA (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials (Advanced Structured Materials, Vol. 59). Singapore: Springer, 2017, pp. 239-258. · Zbl 1390.74014
[6] Barchiesi, E, Spagnuolo, M, Placidi, L. Mechanical metamaterials: A state of the art. Math Mech Solids 2018; 24(1): 212-234. · Zbl 1425.74036
[7] dell’Isola, F, Giorgio, I, Pawlikowski, M, et al. Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc R Soc Lond A Math Phys Eng Sci 2016; 472(2185): 1-23.
[8] Giorgio, I, Rizzi, NL, Turco, E. Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc R Soc Lond A Math Phys Eng Sci 2017; 473(2207): 1-21. · Zbl 1404.74064
[9] Giorgio, I, Della Corte, A, dell’Isola, F. Dynamics of 1D nonlinear pantographic continua. Nonlin Dynam 2017; 88(1): 21-31.
[10] dell’Isola, F, Della Corte, A, Giorgio, I, et al. Pantographic 2D sheets: Discussion of some numerical investigations and potential applications. Int J Non-Lin Mech 2016; 80: 200-208.
[11] dell’Isola, F, Giorgio, I, Andreaus, U. Elastic pantographic 2D lattices: A numerical analysis on static response and wave propagation. Proc Estonian Acad Sci 2015; 64(3): 219-225.
[12] Laudato, M, Barchiesi, E. Non-linear dynamics of pantographic fabrics: Modelling and numerical study. In: Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials. Cham: Springer, 2019, pp. 241-254.
[13] Abali, BE, Barchiesi, E. Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization. Continuum Mech Thermodyn 2020; DOI: 10.1007/s00161-020-00941-w.
[14] Hild, F, Misra, A, dell’Isola, F. Multiscale DIC applied to pantographic structures. Experimental mechanics. Exp Mech 2021; 61(2): 431-443.
[15] Boutin, C, dell’Isola, F, Giorgio, I, et al. Linear pantographic sheets. Asymptotic micro-macro models identification. Math Mech Complex Syst 2017; 5(2): 127-162. · Zbl 1457.74171
[16] Laudato, M, Manzari, L, Scerrato, D, et al. Spectral properties of 2D pantographic metamaterial: Experimental results. Mech Res Commun 2020; 109: 103613.
[17] Golaszewski, M, Grygoruk, R, Giorgio, I, et al. Metamaterials with relative displacements in their microstructure: Technological challenges in 3D printing, experiments and numerical predictions. Continuum Mech Thermodyn 2019; 31(4): 1015-1034.
[18] Misra, A, Lekszycki, T, Giorgio, I, et al. Pantographic metamaterials show atypical Poynting effect reversal. Mech Res Commun 2018; 89: 6-10.
[19] Nejadsadeghi, N, De Angelo, M, Drobnicki, M, et al. Parametric experimentation on pantographic unit cells reveals local extremum configuration. Exp Mech 2019; 59: 927-939.
[20] Tran, CA, Golaszewski, M, Barchiesi, E. Symmetric-in-plane compression of polyamide pantographic fabrics: Modelling, experiments and numerical exploration. Symmetry 2020; 12(693): 1-17.
[21] Timofeev, D, Barchiesi, E, Misra, A, et al. Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. Math Mech Solids 2020; DOI: 10.1177/1081286520968149. · Zbl 07357426
[22] Wang, D, Nejadsadeghi, N, Misra, A, et al. Local rotational dynamics reveals strain dependence in amorphous particle packings. Bull Amer Phys Soc 2021; in press.
[23] Nejadsadeghi, N, Misra, A. Role of higher-order inertia in modulating elastic wave dispersion in materials with granular microstructure. Int J Mech Sci 2020; 185: 105867.
[24] Giorgio, I, dell’Isola, F, Misra, A. Chirality in 2d cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics. Int J Solids Struct 2020; 202: 28-38.
[25] Placidi, L, Andreaus, U, Della Corte, A, et al. Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z angew Math Phys 2015; 66(6): 3699-3725. · Zbl 1386.74018
[26] Placidi, L, Andreaus, U, Giorgio, I. Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J Eng Math 2017; 103(1): 1-21. · Zbl 1390.74018
[27] Laudato, M, Manzari, L, Barchiesi, E, et al. First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech Res Commun 2018; 94: 125-127.
[28] Turco, E. Stepwise analysis of pantographic beams subjected to impulsive loads. Math Mech Solids 2020; DOI: 10.1177/1081286520938841. · Zbl 1486.74088
[29] Turco, E. A numerical survey of nonlinear dynamical responses of discrete pantographic beams. Continuum Mech Thermodyn 2021; doi: 10.1007/s00161-021-00989-2: 1-21.
[30] Baroudi, D, Giorgio, I, Battista, A, et al. Nonlinear dynamics of uniformly loaded elastica: Experimental and numerical evidence of motion around curled stable equilibrium configurations. Z angew Math Mech 2019; 99(7): 1-20. · Zbl 07785932
[31] Giorgio, I. A discrete formulation of Kirchhoff rods in large-motion dynamics. Math Mech Solids 2020; DOI: 10.1177/1081286519900902. · Zbl 1482.74105
[32] Eremeyev, V, dell’Isola, F. A note on reduced strain gradient elasticity. In: Altenbach, H, Pouget, J, Rousseau, M, et al. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1. Cham: Springer, 2018, pp. 301-310.
[33] Eremeyev, VA, dell’Isola, F, Boutin, C, et al. Linear pantographic sheets: Existence and uniqueness of weak solutions. J Elasticity 2018; 132(2): 175-196. · Zbl 1398.74011
[34] Turco, E, Giorgio, I, Misra, A, et al. King post truss as a motif for internal structure of (meta)material with controlled properties. R Soc Open Sci 2017; 4: 171153.
[35] Seppecher, P, Alibert, JJ, dell’Isola, F. Linear elastic trusses leading to continua with exotic mechanical interactions. J Phys Conf Ser 2011; 319(1): 012018.
[36] Giorgio, I, Del Vescovo, D. Energy-based trajectory tracking and vibration control for multi-link highly flexible manipulators. Math Mech Complex Syst 2019; 7(2): 159-174. · Zbl 1458.70004
[37] Giorgio, I, Del Vescovo, D. Non-linear lumped-parameter modeling of planar multi-link manipulators with highly flexible arms. Robotics 2018; 7(60): 1-13.
[38] Hencky, H. Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. PhD Thesis, Engelmann, 1921.
[39] Turco, E, dell’Isola, F, Cazzani, A, et al. Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z angew Math Phys 2016; 67(85): 1-28. · Zbl 1432.74158
[40] Turco, E, Golaszewski, M, Cazzani, A, et al. Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model. Mech Res Commun 2016; 76: 51-56.
[41] Capobianco, G, Eugster, SR. Time finite element based Moreau-type integrators. Int J Numer Meth Eng 2018; 114: 215-231.
[42] Wriggers, P. Nonlinear Finite Element Methods. Berlin: Springer, 2008. · Zbl 1153.74001
[43] Turco, E, Barcz, K, Pawlikowski, M, et al. Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: Numerical simulations. Z angew Math Phys 2016; 67(122): 1-16. · Zbl 1432.74156
[44] Turco, E, Barcz, K, Rizzi, NL. Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: Comparison with experimental evidence. Z angew Math Phys 2016; 67(123): 1-16. · Zbl 1432.74157
[45] Turco, E, Rizzi, NL. Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields. Mech Res Commun 2016; 77: 65-69.
[46] Turco, E, Golaszewski, M, Giorgio, I, et al. Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations. Composites B Eng 2017; 118: 1-14.
[47] Turco, E, Barchiesi, E. Equilibrium paths of Hencky pantographic beams in a three-point bending problem. Math Mech Complex Syst 2019; 7(4): 287-310. · Zbl 1434.74076
[48] Turco, E. Numerically driven tuning of equilibrium paths for pantographic beams. Continuum Mech Thermodyn 2019; 31: 1941-1960.
[49] Eugster, SR, Harsch, J. A variational formulation of classical nonlinear beam theories. In: Abali, BE, Giorgio, I (eds.) Developments and Novel Approaches in Nonlinear Solid Body Mechanics. Berlin: Springer, 2020, pp. 95-121.
[50] Harsch, J, Eugster, SR. Finite element analysis of planar nonlinear classical beam theories. In: Abali, BE, Giorgio, I (eds.) Developments and Novel Approaches in Nonlinear Solid Body Mechanics. Berlin: Springer, 2020, pp. 123-157.
[51] Capobianco, G, Eugster, SR, Winandy, T. Modeling planar pantographic sheets using a nonlinear Euler-Bernoulli beam element based on B-spline functions. Proc Appl Math Mech 2018; 18(1): 1-2.
[52] Turco, E, Barchiesi, E, Giorgio, I, et al. A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int J Non-Lin Mech 2020; 123: 103481.
[53] Turco, E, Misra, A, Pawlikowski, M, et al. Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int J Solids Struct 2018; 147: 94-109.
[54] Barchiesi, E, dell’Isola, F, Laudato, M, et al. A 1D continuum model for beams with pantographic microstructure: Asymptotic micro-macro identification and numerical results. In: Advances in of Microstructured Media and Structures. Cham: Springer, 2018, pp. 43-74.
[55] Barchiesi, E, Eugster, SR, Placidi, L, et al. Pantographic beam: A complete second gradient 1D-continuum in plane. Z angew Math Phys 2019; 70: 135. · Zbl 1425.74387
[56] dell’Isola, F, Steigmann, D, Della Corte, A, et al. Discrete and Continuum Models for Complex Metamaterials. Cambridge: Cambridge University Press, 2020.
[57] Katsikadelis, JT. A new direct time integration method for the equations of motion in structural dynamics. Z angew Math Mech 2013; 94(9): 757-774. · Zbl 1298.74251
[58] de Miranda, S, Mancuso, M, Ubertini, F. Time discontinuous Galerkin methods with energy decaying correction for non-linear elastodynamics. Int J Numer Meth Eng 2010; 83: 323-347. · Zbl 1193.74050
[59] Bathe, KJ, Noh, G. Insight into an implicit time integration scheme for structural dynamics. Comput Struct 2012; 98-99: 1-6.
[60] Casciaro, R. Time evolutional analysis of nonlinear structures. Meccanica 1975; 3(X): 156-167. · Zbl 0374.73069
[61] Casciaro, R. An optimal time discretization method in structural analysis. Technical Report 161, Istituto di Scienza delle costruzioni, Università degli Studi di Roma, 1974.
[62] Riks, E. The application of Newton’s method to the problem of elastic stability. J Appl Mech Trans ASME Ser E 1972; 39(4): 1060-1065. · Zbl 0254.73047
[63] Barchiesi, E, Eugster, SR, dell’Isola, F, et al. Large in-plane elastic deformations of bi-pantographic fabrics: Asymptotic homogenization and experimental validation. Math Mech Solids 2020; 25(3): 739-767. · Zbl 1446.74171
[64] Shirani, M, Steigmann, DJ. A Cosserat model of elastic solids reinforced by a family of curved and twisted fibers. Symmetry 2020; 12(7): 1133.
[65] Steigmann, DJ . Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int J Non-Lin Mech 47; 7: 734-742.
[66] Steigmann, DJ, dell’Isola, F. Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mechanica Sinica 2015; 31(3): 373-382. · Zbl 1346.74128
[67] Steigmann, DJ . Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int J Eng Sci 46; 7: 654-676. · Zbl 1213.74209
[68] Mühlich, U, Abali, BE, dell’Isola, F. Commented translation of Erwin Schrödinger’s paper “On the dynamics of elastically coupled point systems” (Zur Dynamik Elastisch Gekoppelter Punktsysteme). Math Mech Solids 2021; 26(1): 133-147. · Zbl 1486.74003
[69] Desmorat, B, Spagnuolo, M, Turco, E. Stiffness optimization in nonlinear pantographic structures. Math Mech Solids 2020; 25(11): 2252-2262. · Zbl 1482.74143
[70] Aristodemo, M. A high-continuity finite element model for two-dimensional elastic problems. Comput Struct 1985; 21(5): 987-993. · Zbl 0587.73109
[71] Andreaus, U, Baragatti, P, Placidi, L. Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int J Non-Lin Mech 2016; 80: 96-106.
[72] Lekszycki, T, Olhoff, N, Pedersen, JJ. Modelling and identification of viscoelastic properties of vibrating sandwich beams. Composite Struct 1992; 22(1): 15-31.
[73] dell’Isola, F, Rosa, L, Wozniak, C. Dynamics of solids with microperiodic nonconnected fluid inclusions. Arch Appl Mech 1997; 67: 215-228. · Zbl 0888.73004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.