×

Nonlocal symmetries. Heuristic approach. (English. Russian original) Zbl 0760.35002

J. Sov. Math. 55, No. 1, 1401-1450 (1991); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Noveishie Dostizh. 34, 3-83 (1989).
See the review in Zbl 0722.35004.

MSC:

35A25 Other special methods applied to PDEs
35K55 Nonlinear parabolic equations
58J72 Correspondences and other transformation methods (e.g., Lie-Bäcklund) for PDEs on manifolds
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics

Citations:

Zbl 0722.35004
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. K. Andreev and A. A. Rodionov, ?Group analysis of equations of planar flows of an ideal fluid in Lagrangian coordinates?, Dokl. Akad. Nauk SSSR,298, No. 6, 1358?1361 (1988).
[2] V. K. Andreev and A. A. Rodionov, ?Group classification and exact solutions of equations of planar and rotationally-symmetric flow of an ideal fluid in Lagrangian coordinates?, Differents. Uravnen., No. 9, 1577?1586 (1988).
[3] J. Astarita and J. Marucci, Foundations of Hydromechanics of Non-Newtonian Fluids [Russian translation], Mir, Moscow (1978).
[4] I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, ?Group classification of the equations of nonlinear filtration?, Dokl. Akad. Nauk SSSR,293, No. 5, 1033?1035 (1987). · Zbl 0632.76004
[5] I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, ?Quasilocal symmetries of equations of the type of nonlinear thermal conductivity?, Dokl. Akad. Nauk SSSR,295, No. 1, 75 (1987).
[6] I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, ?Bäcklund transformations and nonlocal symmetries?, Dokl. Akad. Nauk SSSR,297, No. 1, 11?14 (1987). · Zbl 0659.35092
[7] I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, ?Quasilocal symmetries of equations of mathematical physics?, in: Mathematical Modeling. Nonlinear Differential Equations of Mathematical Physics [in Russian], Nauka, Moscow (1987), pp. 22?56.
[8] I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, ?Group properties and exact solutions of equations of nonlinear filtration?, in: Numerical Methods of Solution of Problems of Filtration of a Multiphase Incompressible Fluid [in Russian], Novosibirsk (1987), pp. 24?27.
[9] I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, ?Basic types of invariant equations of one-dimensional gas-dynamics?, Preprint, Inst. Applied Math. of the Acad. of Sciences of the USSR, Moscow (1988).
[10] G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Nonstationary Filtration of a Fluid and Gas [in Russian], Nedra, Moscow (1972).
[11] A. A. Berezovskii, Lectures on Nonlinear Boundary Problems of Mathematical Physics [in Russian], Parts I and II, Naukova Dumka, Kiev (1976). · Zbl 0368.35003
[12] N. N. Bogolyubov, ?Question of model Hamiltonian in the theory of superconductivity?, in: Selected Works in Three Volumes [in Russian], Vol. 3, Naukova Dumka Kiev (1971), pp. 110?173.
[13] A. M. Vinogradov and I. S. Krasil’shchik, ?A method of calculation of higher symmetries of nonlinear evolution equations and nonlocal symmetries,? Dokl. Akad. Nauk SSSR,253, No. 6, 1289?1293 (1980).
[14] A. M. Vinogradov and I. S. Krasil’shchik, ?Theory of nonlocal symmetries of nonlinear partial differential equations?, Dokl. Akad. Nauk SSSR,275, No. 5, 1044?1049 (1984).
[15] A. M. Vinogradov, I. S. Krasil’shchik, and V. V. Lychagin, Introduction to the Geometry of Nonlinear Differential Equations [in Russian], Nauka, Moscow (1986). · Zbl 0592.35002
[16] V. S. Vladimirov and I. V. Volovich, ?Local and nonlocal flows for nonlinear equations?, Teor. Mat. Fiz.,62, No. 1, 3?29 (1985). · Zbl 0566.35090
[17] V. S. Vladimirov and I. V. Volovich, ?Conservation laws for nonlinear equations?, Usp. Mat. Nauk,40, No. 4, 17?26 (1985). · Zbl 0613.35062
[18] R. K. Gazizov, ?Contact transformations of equations of the type of nonlinear filtration?, in: Physicochemical Hydrodynamics. Inter-University Scientific Collection [in Russian], Izdat. Bashk. Gos. Univ., Ufa (1987), pp. 38?41.
[19] N. Kh. Ibragimov, ?Theory of Lie?Bäcklund transformation groups?, Mat. Sborn.,109, No. 2, 229?253 (1979).
[20] N. Kh. Ibravimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).
[21] N. Kh. Ibragimov and A. B. Shabat, ?Korteweg-de Vries equation from the group point of view?, Dokl. Akad. Nauk SSSR,244, No. 1, 57?61 (1979). · Zbl 0423.35076
[22] O. V. Kaptsov, ?Extension of symmetries of evolutional equations?, Dokl. Akad. Nauk SSSR,262, No. 5, 1056?1059 (1982).
[23] E. G. Kirnasov, ?Wohlquist-Estabrook type coverings over the equation of thermal conductivity?, Mat. Zametki,42, No. 3, 422?434 (1987). · Zbl 0699.35133
[24] B. G. Konopel’chenko and V. G. Mokhnachev, ?Group analysis of differential equations?, Yadernaya Fiz.,30, No. 2, 559?567 (1979).
[25] V. V. Kornyak, ?Application of a computer to study the symmetries of some equations of mathematical physics?, in: Group-Theoretic Studies of Equations of Mathematical Physics [in Russian], Inst. Mat. Akad. Nauk UkrSSR, Kiev (1985), pp. 114?119. · Zbl 0612.35116
[26] E. V. Lenskii, ?Group properties of equations of motion of a nonlinear viscoplastic medium?, Vestn. Mosk. Gos. Univ. (MGU), Mat., Mekhan., No. 5, 116?125 (1966).
[27] L. V. Ovsyannikov, ?Groups and group-invariant solutions of differential equations?, Dokl. Akad. Nauk SSSR,118, No. 3, 439?442 (1958). · Zbl 0084.08602
[28] L. V. Ovsyannikov, ?Group properties of equations of thermal conductivity?, Dokl. Akad. Nauk SSSR,125, No. 3, 492?495 (1959). · Zbl 0092.09903
[29] L. V. Ovsyannikov, Group Properties of Differential Equations [in Russian], Izdat. Sib. Otd. (SO) Akad. Nauk SSSR, Novosibirsk (1962).
[30] L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978). · Zbl 0484.58001
[31] M. I. Petrashen’ and E. D. Trifonov, Application of Group Theory to Quantum Mechanics [in Russian], Nauka, Moscow (1967). · Zbl 0194.28902
[32] V. V. Pukhnachev, ?Evolution equations and Lagrangian coordinates?, in: Dynamics of Continuous Media in the Seventies [in Russian], Novosibirsk (1985), pp. 127?141. · Zbl 0629.35058
[33] V. V. Pukhnachev, ?Equivalence transformations and hidden symmetries of evolution equations?, Dokl. Akad. Nauk SSSR,294, No. 3, 535?538 (1987). · Zbl 0681.35004
[34] B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Application to Gas Dynamics [in Russian], Nauka, Moscow (1978).
[35] S. R. Svirshchevskii, ?Group properties of a model of thermal transport taking into account relaxation of thermal flow?, Preprint, Inst. Prikl. Mat. Akad. Nauk SSSR, No. 105 (1988).
[36] V. A. Florin, ?Some of the simplest nonlinear problems of consolidation water-saturated earth media?, Izv. Akad. Nauk SSSR, OTN, No. 9, 1389?1402 (1948).
[37] V. A. Fok, ?Hydrogen atom and non-Eulidean geometry?, Izv. Akad. Nauk SSSR, VII. Seriya Otdel. Mat. Estestv. Nauk, No. 2, 169?179 (1935).
[38] V. I. Fushchich, ?Supplementary invariances of relativistic equations of motion?, Teor. Mat. Fiz.,7, No. 1, 3?12 (1971).
[39] V. I. Fushchich, ?A new method of study of group properties of the equations of mathematical physics?, Dokl. Akad. Nauk SSSR,246, No. 4, 846?850 (1979). · Zbl 0424.22016
[40] V. I. Fushchich and V. V. Kornyak, ?Realization on a computer of an algorithm for calculating nonlocal symmetries for Dirac type equations?, Preprint, Inst. Mat. Akad. Nauk UkrSSR, 85.20, No. 20, Kiev (1985).
[41] N. G. Khor’kova, ?Conservation laws and nonlocal symmetries?, Mat. Zametki,44, No. 1, 134?145 (1988).
[42] W. F. Ames, Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, Vol. 1 (1965), Vol. 2 (1972). · Zbl 0176.39701
[43] G. Bluman and S. Kumei, ?On the remarkable nonlinear diffusion equation?/?x[a(u+b)?2?u/?x]??u/?t=0,? J. Math. Phys.,21, No. 5, 1019?1023 (1980). · Zbl 0448.35027
[44] J. R. Burgan, A. Munier, M. R. Felix, and E. Fijalkow, ?Homology and the nonlinear heat diffusion equation?, SIAM J. Appl. Math.,44, No. 1, 11?18 (1984). · Zbl 0548.35071
[45] J. D. Cole, ?On a quasilinear parabolic equation used in aerodynamics?, Quart. Appl. Math.,9, 225?236 (1951). · Zbl 0043.09902
[46] E. Hopf, ?The partial differential equation ut+uux=?uxx?, Commun. Pure. Appl. Math.,3, 201?230 (1950). · Zbl 0039.10403
[47] N. H. Ibragimov, ?Sur l’equivalence des equations d’evolution qui admettent une algebre de Lie?Bäcklund infinie?, C. R. Acad. Sci. Ser. 1, Paris,293, No. 14, 657?660 (1981).
[48] S. Lie, ?Begründung einer Invariantentheorie der Berührungstransformationen?, Math. Ann.,8, No. 2, 215?228 (1874). · JFM 06.0092.01
[49] A. Munier, J. R. Burgan, J. Gutierrez, E. Fijalkow, and M. R. Feliz, ?Group transformations and the nonlinear heat diffusion equation?, SIAM J. Appl. Math.,40, No. 2, 191?207 (1981). · Zbl 0468.35051
[50] A. Oron and P. Rosenau, ?Some symmetries of the nonlinear heat and wave equations?, Phys. Lett. A,118, No. 4, 172?176 (1986). · Zbl 1020.35501
[51] L. V. Ovsjannikov, ?Some problems arising in group analysis of differential equations?, in: Proc. Symp. Symmetry, Similarity and Group-Theory. Methods in Mechanics, Calgary (1974), pp. 181?202.
[52] K. Kiso, ?Pseudopotentials and symmetries of evolution equations?, Hokkaido Math. J.,18, No. 1, 125?136 (1989). · Zbl 0734.35113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.