×

Out-of-plane deformation reduction via inelastic hinges in fibrous metamaterials and simplified damage approach. (English) Zbl 07601695

Summary: The mechanical behavior of fibrous metamaterials is mainly determined by the interactions between the fibers composing the architecture. These interactions are usually of two different kinds: those directly depending on the positions of the fibers and those that need mediators, usually consisting of hinges, either inelastic or perfect, inducing restrictions on the kinematics of the fiber joints. In cases of interest, it has been observed that hinges can either have a certain torsional stiffness or behave as perfect joints, simply ensuring that the fibers remain interconnected, but not applying any constraint on the relative rotations between them. Here the effect of torsional stiffness of inelastic hinges is studied in two shear tests for a selected fibrous metamaterial. It is shown that the stiffness of hinges can be tailored to avoid, or at least reduce, out-of-plane deformations. Moreover, it is shown that, after reaching a threshold, permanent deformations are observed. This phenomenon is treated in a simplified way, by introducing damage in the continuum model.

MSC:

74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] George D, Spingarn C, Dissaux C, et al. Examples of multiscale and multiphysics numerical modeling of biological tissues. Bio-Med Mater Eng2017; 28(S1): S15-S27.
[2] Giorgio I, Andreaus U, Madeo A. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech Thermodyn2016; 28(1-2): 21-40. · Zbl 1348.74242
[3] Giorgio I, dell’Isola F, Andreaus U, et al. On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomech Model Mechanobiol2019; 18(6): 1639-1663.
[4] Giorgio I, Andreaus U, Scerrato D, et al. Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Math Mech Solids2017; 22(9): 1790-1805. · Zbl 1391.74156
[5] Lekszycki T, Olhoff N. Optimal design of viscoelastic structures under forced steady-state vibration. J Struct Mech1981; 9(4): 363-387.
[6] Dietrich L, Lekszycki T, Turski K. Problems of identification of mechanical characteristics of viscoelastic composites. Acta Mech1998; 126(1): 153-167. · Zbl 0899.73299
[7] Mróz Z, Lekszycki T. Optimal support reaction in elastic frame structures. Comput Struct1981; 14(3-4): 179-185, 1981. · Zbl 0469.73077
[8] Lu Y, Lekszycki T. A novel coupled system of non-local integro-differential equations modelling Young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing. Z Angew Math Phys2016; 67(5): 111. · Zbl 1432.74153
[9] Lu Y, Lekszycki T. New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption. Continuum Mech Thermodyn2018; 30(5): 995-1009. · Zbl 1396.74081
[10] Giorgio I, Andreaus U, Lekszycki T, et al. The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math Mech Solids2017; 22(5): 969-987. · Zbl 1371.74209
[11] Giorgio I, Andreaus U, dell’Isola F, et al. Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech Lett2017; 13: 141-147.
[12] Scerrato D, Bersani AM, Giorgio I. Bio-inspired design of a porous resorbable scaffold for bone reconstruction: A preliminary study. Biomimetics2021; 6(1): 18.
[13] dell’Isola F, Seppecher P, Spagnuolo M, et al. Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mech Thermodyn2019; 31(4): 1231-1282.
[14] Turco E, dell’Isola F, Rizzi NL, et al. Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence. Mech Res Commun2016; 76: 86-90.
[15] Yildizdag ME, Barchiesi E, dell’Isola F. Three-point bending test of pantographic blocks: Numerical and experimental investigation. Math Mech Solids2020; 25(10): 1965-1978. · Zbl 07259266
[16] Bertoldi K, Reis PM, Willshaw S, et al. Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater2010; 22(3): 361-366.
[17] Pideri C, Seppecher P. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech Thermodyn1997; 9(5): 241-257. · Zbl 0893.73006
[18] Placidi L, dell’Isola F, Barchiesi E. Heuristic homogenization of Euler and pantographic beams. In: Picu C, Ganghoffer J-F (eds.) Mechanics of fibrous materials and applications. Cham, Switzerland: Springer, 2020, 123-155.
[19] Pingaro M, Reccia E, Trovalusci P. Homogenization of random porous materials with low-order virtual elements. ASCE-ASME J Risk Uncertainty Eng Syst Part B: Mech Eng2019; 5(3): 030905.
[20] Reccia E, De Bellis ML, Trovalusci P, et al. Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Composites, Part B2018; 136: 39-45.
[21] Torabi J, Niiranen J. Microarchitecture-dependent nonlinear bending analysis for cellular plates with prismatic corrugated cores via an anisotropic strain gradient plate theory of first-order shear deformation. Eng Struct2021; 236: 112117.
[22] Madeo A, Della Corte A, Giorgio I, et al. Modeling and designing micro-and nano-structured metamaterials: Towards the application of exotic behaviors. Math Mech Solids2017; 22(4): 873-884. · Zbl 1371.74022
[23] dell’Isola F, Steigmann DJ. Discrete and continuum models for complex metamaterials. Cambridge: Cambridge University Press, 2020.
[24] Barchiesi E, Spagnuolo M, Placidi L. Mechanical metamaterials: A state of the art. Math Mech Solids2019; 24(1): 212-234. · Zbl 1425.74036
[25] Abali BE, Yang H. Parameter determination of metamaterials in generalized mechanics as a result of computational homogenization. In: Indeitsev D, Krivtsov A (eds.) Advanced problems in mechanics(Lecture Notes in Mechanical Engineering). Cham, Switzerland: Springer, 2019, 22-31.
[26] Carcaterra A, dell’Isola F, Esposito R, et al. Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch Ration Mech Anal2015; 218(3): 1239-1262. · Zbl 1352.37193
[27] dell’Isola F, Barchiesi E, Misra A. Naive model theory: Its applications to the theory of metamaterials design. In: dell’Isola F, Steigmann D (eds.) Discrete and continuum models for complex metamaterials. Cambridge: Cambridge University Press, 2020, 141-196.
[28] Eugster S, dell’Isola F, Steigmann D. Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math Mech Complex Syst2019; 7(1): 75-98. · Zbl 1428.74004
[29] Giorgio I, Ciallella A, Scerrato D. A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: Some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials. Int J Solids Struct2020; 203: 73-83.
[30] Khakalo S, Niiranen J. Lattice structures as thermoelastic strain gradient metamaterials: Evidence from full-field simulations and applications to functionally step-wise-graded beams. Composites, Part B2019; 177: 107224.
[31] Scerrato D, Giorgio I. Equilibrium of two-dimensional cycloidal pantographic metamaterials in three-dimensional deformations. Symmetry2019; 11(12): 1523.
[32] Spagnuolo M, Cazzani AM. Contact interactions in complex fibrous metamaterials. Continuum Mech Thermodyn2021; 33: 1873-1889.
[33] Spagnuolo M, Barcz K, Pfaff A, et al. Qualitative pivot damage analysis in aluminum printed pantographic sheets: Numerics and experiments. Mech Res Commun2017; 83: 47-52.
[34] Spagnuolo M, Peyre P, Dupuy C. Phenomenological aspects of quasi-perfect pivots in metallic pantographic structures. Mech Res Commun2019; 101: 103415.
[35] Turco E, Misra A, Pawlikowski M, et al. Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int J Solids Struct2018; 147: 94-109.
[36] Misra A, Lekszycki T, Giorgio I, et al. Pantographic metamaterials show atypical Poynting effect reversal. Mech Res Commun2018; 89: 6-10.
[37] Giorgio I, Rizzi NL, Andreaus U, et al. A two-dimensional continuum model of pantographic sheets moving in a 3D space and accounting for the offset and relative rotations of the fibers. Math Mech Complex Syst2019; 7(4): 311-325. · Zbl 1446.74080
[38] Turco E, Golaszewski M, Cazzani A, et al. Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model. Mech Res Commun2016; 76: 51-56.
[39] Ciallella A, Pasquali D, Gołaszewski M, et al. A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic load. Mech Res Commun2021; 116: 103761.
[40] Alibert J-J, Seppecher P, dell’Isola F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids2003; 8(1): 51-73. · Zbl 1039.74028
[41] Seppecher P, Alibert J-J, dell’Isola F. Linear elastic trusses leading to continua with exotic mechanical interactions. J Phys Conf Ser2011; 319(1): 012018.
[42] dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL. Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium. Proc R Soc London, Ser A2016; 472(2185): 20150790.
[43] Barchiesi E, Eugster SR, dell’Isola F, et al. Large in-plane elastic deformations of bi-pantographic fabrics: Asymptotic homogenization and experimental validation. Math Mech Solids2020; 25(3): 739-767. · Zbl 1446.74171
[44] Barchiesi E, dell’Isola F, Hild F, et al. Two-dimensional continua capable of large elastic extension in two independent directions: Asymptotic homogenization, numerical simulations and experimental evidence. Mech Res Commun2020; 103: 103466.
[45] dell’Isola F, Cuomo M, Greco L, et al. Bias extension test for pantographic sheets: Numerical simulations based on second gradient shear energies. J Eng Math2017; 103(1): 127-157. · Zbl 1390.74028
[46] Eremeyev VA, dell’Isola F, Boutin C, et al. Linear pantographic sheets: Existence and uniqueness of weak solutions. J Elast2018; 132(2): 175-196. · Zbl 1398.74011
[47] Turco E, dell’Isola F, Cazzani A, et al. Hencky-type discrete model for pantographic structures: Numerical comparison with second gradient continuum models. Z Angew Math Phys2016; 67: 85. · Zbl 1432.74158
[48] Turco E, Rizzi NL. Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields. Mech Res Commun2016; 77: 65-69.
[49] Spagnuolo M, Yildizdag ME, Andreaus U, et al. Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math Mech Solids2021; 26(1): 18-29. · Zbl 1486.74005
[50] Giorgio I, Rizzi N, Turco E. Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc R Soc London, Ser A2017; 473(2207): 20170636. · Zbl 1404.74064
[51] Germain P. La méthode des puissances virtuelles en mécanique des milieux continus, premiere partie: Théorie du second gradient. J Mec1973; 12(2): 235-274. · Zbl 0261.73003
[52] Germain P. The method of virtual power in the mechanics of continuous media, I: Second-gradient theory. Math Mech Complex Syst2020; 8(2): 153-190. · Zbl 1445.74002
[53] Germain P. The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J Appl Math1973; 25(3): 556-575. · Zbl 0273.73061
[54] Lebedev L, Cloud M, Eremeyev V. Tensor analysis with applications in continuum mechanics. Singapore: World Scientific, 2018. · Zbl 1471.74001
[55] Giorgio I, Harrison P, dell’Isola F, et al. Wrinkling in engineering fabrics: A comparison between two different comprehensive modelling approaches. Proc R Soc London, Ser A2018; 474: 20180063.
[56] Giorgio I, Varano V, dell’Isola F, et al. Two layers pantographs: A 2D continuum model accounting for the beams’ offset and relative rotations as averages in SO(3) Lie groups. Int J Solids Struct2021; 216: 43-58.
[57] De Angelo M, Barchiesi E, Giorgio I, et al. Numerical identification of constitutive parameters in reduced order bi-dimensional models for pantographic structures: Application to out-of-plane buckling. Arch Appl Mech2019; 89(7): 1333-1358.
[58] Yang H, Ganzosch G, Giorgio I, et al. Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z Angew Math Phys2018; 69(4): 105. · Zbl 1401.74016
[59] Desmorat B, Spagnuolo M, Turco E. Stiffness optimization in nonlinear pantographic structures. Math Mech Solids2020; 25(12): 2252-2262. · Zbl 1482.74143
[60] Maurin F, Greco F, Desmet W. Isogeometric analysis for nonlinear planar pantographic lattice: Discrete and continuum models. Continuum Mech Thermodyn2019; 31(4): 1051-1064.
[61] Andreaus U, Spagnuolo M, Lekszycki T, et al. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Continuum Mech Thermodyn2018; 30(5): 1103-1123. · Zbl 1396.74070
[62] Greco L. An iso-parametric \[No alternative text available\]-conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: The 2D case. Continuum Mech Thermodyn2020; 32: 1473-1496.
[63] Giorgio I. Lattice shells composed of two families of curved Kirchhoff rods: An archetypal example, topology optimization of a cycloidal metamaterial. Continuum Mech Thermodyn2021; 33(4): 1063-1082.
[64] Sutton MA, Orteu JJ, Schreier H. Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. Berlin: Springer, 2009.
[65] Hild F, Roux S. Digital image correlation. In: Rastogi P, Hack E (eds.) Optical methods for solid mechanics: A full-field approach. Weinheim: Wiley, 2012.
[66] Giorgio I. A discrete formulation of Kirchhoff rods in large-motion dynamics. Math Mech Solids2020; 25(5): 1081-1100. · Zbl 1482.74105
[67] Leclerc H, Neggers J, Mathieu F, et al. Correli 3.0. Paris, France: Agence pour la Protection des Programmes, 2015.
[68] Barchiesi E, dell’Isola F, Hild F. On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation. Int J Solids Struct2021; 208-209: 49-62.
[69] Cuomo M, dell’Isola F, Greco L, et al. First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities. Composites, Part B2017; 115: 423-448.
[70] Eremeyev VA, Altenbach H. Equilibrium of a second-gradient fluid and an elastic solid with surface stresses. Meccanica2014; 49(11): 2635-2643. · Zbl 1306.76010
[71] Scerrato D, Giorgio I, Rizzi NL. Three-dimensional instabilities of pantographic sheets with parabolic lattices: Numerical investigations. Z Angew Math Phys2016; 67(3): 53. · Zbl 1464.74028
[72] Barchiesi E, Ganzosch G, Liebold C, et al. Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: Experimental results and model validation. Continuum Mech Thermodyn2019; 31(1): 33-45.
[73] Khakalo S, Balobanov V, Niiranen J. Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: Applications to sandwich beams and auxetics. Int J Eng Sci2018; 127: 33-52. · Zbl 1423.74343
[74] Altenbach H, Eremeyev V. Strain rate tensors and constitutive equations of inelastic micropolar materials. Int J Plast2014; 63: 3-17.
[75] Bertram A. Finite gradient elasticity and plasticity: A constitutive mechanical framework. Continuum Mech Thermodyn2015; 27(6): 1039-1058. · Zbl 1341.74030
[76] Misra A, Poorsolhjouy P. Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math Mech Solids2020; 25(10): 1778-1803. · Zbl 07259257
[77] Cuomo M. Continuum damage model for strain gradient materials with applications to 1D examples. Continuum Mech Thermodyn2019; 31(4): 969-987.
[78] Placidi L. A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech Thermodyn2015; 27(4-5): 623-638. · Zbl 1341.74016
[79] Placidi L, Barchiesi E, Misra A. A strain gradient variational approach to damage: A comparison with damage gradient models and numerical results. Math Mech Complex Syst2018; 6(2): 77-100. · Zbl 1452.74019
[80] Placidi L, Misra A, Barchiesi E. Two-dimensional strain gradient damage modeling: A variational approach. Z Angew Math Phys2018; 69(3): 56. · Zbl 1393.74168
[81] Placidi L, Barchiesi E, Misra A, et al. Variational methods in continuum damage and fracture mechanics. In: Altenbach H, Öchsner A (eds.) Encyclopedia of continuum mechanics. Berlin: Springer, 2019.
[82] Placidi L, Misra A, Barchiesi E. Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech Thermodyn2019; 31(4): 1143-1163.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.