×

An updated Lagrangian Bézier finite element formulation for the analysis of slender beams. (English) Zbl 07619127

Summary: A \(G^1\)-conforming finite element formulation based on the Kirchhoff beam model suitable for the analysis of structures composed by coupling of slender beams is presented. A new set of kinematic parameters is introduced in order to account for the continuity required by the rod model. This new set of kinematic parameters defines the \(G^1\)-map that guarantees continuity of the rotations at the ends of the beam. The tangent stiffness matrix for the proposed Kirchhoff beam model is derived in a consistent way. It is shown that an additional geometric term, specific for the \(G^1\)-conforming formulation, appears in the tangent stiffness matrix. In order to avoid the singularities arising with the introduction of the \(G^1\)-map, an updated Lagrangian formulation is adopted. In this way, a \(G^1\)-conforming Bézier finite element based on the Kirchhoff beam model able to model large deformations of space rod systems is obtained. Several numerical examples show the high accuracy and the robustness of the proposed conforming formulation.

MSC:

74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Harsch J, Capobianco G, Eugster S. Finite element formulations for constrained spatial nonlinear beam theories. Math Mech Solids2021; 26(12): 1838-1863. · Zbl 07589921
[2] Romero I, Gebhardt C. Variational principles for nonlinear Kirchhoff rods. Acta Mech2020; 231: 625-647. · Zbl 1435.74052
[3] Boyer F, Primault D. Finite element of slender beams in finite transformations: a geometrically exact approach. Int J Numer Meth Eng2004; 59(5): 669-702. · Zbl 1274.74445
[4] Greco L, Cuomo M. B-Spline interpolation of Kirchhoff-Love space rods. Comput Method Appl M2013; 256: 251-269. · Zbl 1352.74153
[5] Armero F, Valverde J. Invariant Hermitian finite elements for thin Kirchhoff rods. I: the linear plane case. Comput Method Appl M2012; 213-216: 427-457. · Zbl 1243.74176
[6] Armero F, Valverde J. Invariant Hermitian finite elements for thin Kirchhoff rods. II: the linear three-dimensional case. Comput Method Appl M2012; 213-216: 458-485. · Zbl 1243.74177
[7] da Costa e Silva C, Maassen S, Pimenta P, et al. A simple finite element for the geometrically exact analysis of Bernoulli-Euler rods. Comput Mech2020; 65: 905-923. · Zbl 1468.74061
[8] Bauer A, Breitenberger M, Philipp B, et al. Nonlinear isogeometric spatial Bernoulli Beam. Comput Method Appl M2016; 303: 101-127. · Zbl 1425.74450
[9] Bauer A, Wüchner R, Bletzinger K. Weak coupling of nonlinear isogeometric spatial Bernoulli beams. Comput Method Appl M2020; 361: 112747. · Zbl 1442.74097
[10] Greco L, Cuomo M. An implicit \(G^1\) multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput Method Appl M2014; 269: 173-197. · Zbl 1296.74049
[11] Greco L, Cuomo M. An isogeometric implicit \(G^1\) mixed finite element for Kirchhoff space rods. Comput Method Appl M2016; 298: 325-349. · Zbl 1425.74259
[12] Greco L, Scrofani A, Cuomo M. A non-linear symmetric \(G^1\)-conforming Bézier finite element formulation for the analysis of Kirchhoff beam assemblies. Comput Method Appl M2021; 387: 114176. · Zbl 1507.74192
[13] Meier C, Popp A, Wall W. An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput Method Appl M2014; 278: 445-478. · Zbl 1423.74501
[14] Meier C, Popp A, Wall W. Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory. Arch Comput Method E2019; 26: 163-243.
[15] Yang Y, Liu Y, Wu Y. Invariant isogeometric formulation for three-dimensional Kirchhoff rods. Comput Method Appl M2020; 365: 112996. · Zbl 1442.74109
[16] Yang Y, Liu Y. Invariant isogeometric formulation for the geometric stiffness matrix of spatial curved Kirchhoff rods. Comput Method Appl M2021; 377: 113692. · Zbl 1506.74177
[17] Radenković G, Borković A. Linear static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam. Comput Method Appl M2018; 341: 360-396. · Zbl 1440.74187
[18] Borković A, Kovačević S, Radenković G, et al. Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli-Euler beam. Comput Method Appl M2018; 334: 238-267. · Zbl 1440.74180
[19] Vo D, Borković A, Nanakorn P, et al. Dynamic multi-patch isogeometric analysis of planar Euler-Bernoulli beams. Comput Method Appl M2020; 372: 113435. · Zbl 1506.74482
[20] Borković A, Marussig B, Radenković G. Geometrically exact static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam. Comput Method Appl M2022; 390: 114447. · Zbl 1507.74189
[21] Spagnuolo M, Andreaus U. A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math Mech Solids2019; 24(1): 258-280. · Zbl 1425.74267
[22] Giorgio I. A discrete formulation of Kirchhoff rods in large-motion dynamics. Math Mech Solids2020; 25(5): 1081-1100. · Zbl 1482.74105
[23] Giorgio I, Del Vescovo D. Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators. Math Mech Complex Syst2019; 7(2): 159-174. · Zbl 1458.70004
[24] Bergou M, Wardetzky M, Robinson S, et al. Discrete elastic rods. ACM T Graphic2008; 27(3): 1-12.
[25] Jawed M, Novelia A, O’Reilly O. A primer on the kinematics of discrete elastic rods(SpringerBriefs in applied sciences and technology). Cham: Springer, 2018.
[26] Liu Y, Song K, Meng L. A geometrically exact discrete elastic rod model based on improved discrete curvature. Comput Method Appl M2022; 392: 114640. · Zbl 1507.74196
[27] Marino E. Isogeometric collocation for three-dimensional geometrically exact shear-deformable beams. Comput Method Appl M2016; 307: 383-410. · Zbl 1439.74159
[28] Marino E. Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput Method Appl M2017; 324: 546-572. · Zbl 1439.74491
[29] Cazzani A, Malagú M, Turco E. Isogeometric analysis of plane-curved beams. Math Mech Solids2014; 21(5): 562-577. · Zbl 1370.74084
[30] Cazzani A, Malagú M, Turco E. Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids2015; 21(2): 182-209. · Zbl 1333.74051
[31] Cazzani A, Stochino F, Turco E. An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. Z Angew Math Mech2016; 96(10): 1220-1244. · Zbl 07775105
[32] Steigmann D, Faulkner M. Variational theory for spatial rods. J Elasticity1993; 33: 1-26. · Zbl 0801.73039
[33] Chróścielewski J, Schmidt R, Eremeyev V. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mech Therm2019; 31: 147-188.
[34] Della Corte A, dell’Isola F, Esposito R, et al. Equilibria of a clamped Euler beam (elastica) with distributed load: large deformations. Math Model Method Appl Sci2017; 27(08): 1391-1421. · Zbl 1368.74031
[35] Baroudi D, Giorgio I, Battista A, et al. Nonlinear dynamics of uniformly loaded elastica: experimental and numerical evidence of motion around curled stable equilibrium configurations. Z Angew Math Mech2019; 99(7): e201800121. · Zbl 07785932
[36] D’Annibale F. Piezoelectric control of the Hopf bifurcation of Ziegler’s column with nonlinear damping. Nonlinear Dynam2016; 86(4): 2179-2192. · Zbl 1452.70021
[37] Eremeyev V, Turco E. Enriched buckling for beam-lattice metamaterials. Mech Res Commun2020; 130: 103458.
[38] Turco E, Barchiesi E. Equilibrium paths of Hencky pantographic beams in a three-point bending problem. Math Mech Complex Syst2019; 7(4): 287-310. · Zbl 1434.74076
[39] Turco E, Barchiesi E, Giorgio I, et al. A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int J Nonlin Mech2020; 123: 103481.
[40] Alibert JJ, Seppecher P, dell’Isola F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids2003; 8(1): 51-73. · Zbl 1039.74028
[41] Tran L, Niiranen J. A geometrically nonlinear Euler-Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications. Math Mech Complex Syst2020; 8(4): 345-371. · Zbl 1473.65213
[42] Khakalo S, Niiranen J. Lattice structures as thermoelastic strain gradient metamaterials: evidence from full-field simulations and applications to functionally step-wise-graded beams. Compos Part B: Eng2019; 177: 107224.
[43] Turco E, Barchiesi E, dell’Isola F. In-plane dynamic buckling of duoskelion beam-like structures: discrete modeling and numerical results. Math Mech Solids2022; 27: 1164-1184. · Zbl 07601703
[44] Eugster S. Numerical analysis of nonlinear wave propagation in a pantographic sheet. Math Mech Complex Syst2021; 9(3): 293-310. · Zbl 1504.74045
[45] Simo J, Fox D. On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Method Appl M1989; 72(3): 267-304. · Zbl 0692.73062
[46] Rebel G. Finite rotation shell theory including drill rotations and its finite element implementation. PhD Thesis, Delft University Press, Delft, 1998.
[47] Greco L, Cuomo M. Consistent tangent operator for an exact Kirchhoff rod model. Continuum Mech Therm2015; 27: 861-877. · Zbl 1341.74096
[48] Borden M, Scott M, Evans J, et al. Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Meth Eng2011; 87(1-5): 15-47. · Zbl 1242.74097
[49] Greco L. An iso-parametric \(G^1\)-conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: the 2D case. Continuum Mech Therm2020; 32: 1473-1496.
[50] Eugster S, Glocker C. Constraints in structural and rigid body mechanics: a frictional contact problem. Ann Solid Struct Mech2013; 5: 1-13.
[51] Simo J. The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: intrinsic definition and geometric interpretation. Comput Method Appl M1992; 96(2): 189-200. · Zbl 0761.73016
[52] Argyris J, Hilpert O, Melejannakis G, et al. On the geometrical stiffness of a beam in space—a consistence V.W. approach. Comput Method Appl M1979; 20(1): 105-131. · Zbl 0419.73074
[53] Simo J, Fox D, Rifai M. On a stress resultant geometrically exact shell model. part III: computational aspects of the nonlinear theory. Comput Method Appl M1990; 79(1): 21-70. · Zbl 0746.73015
[54] Yoshiaki G, Yasuhito W, Toshihiro K, et al. Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct1992; 29(7): 893-909.
[55] Romero I. The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech2004; 34: 121-133. · Zbl 1138.74406
[56] Ganzosch G, Hoschke K, Lekszycki T, et al. 3D-measurements of 3D-deformations of pantographic structures. Tech Mech2018; 38(3): 233-245.
[57] Misra A, Lekszycki T, Giorgio I, et al. Pantographic metamaterials show atypical Poynting effect reversal. Mech Res Commun2018; 89: 6-10.
[58] Giorgio I, Varano V, dell’Isola F, et al. Two layers pantographs: a 2D continuum model accounting for the beams’ offset and relative rotations as averages in SO(3) Lie groups. Int J Solids Struct2021; 216: 43-58.
[59] De Angelo M, Spagnuolo M, D’Annibale F, et al. The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Continuum Mech Therm2019; 31: 1181-1203.
[60] Greco L, Cuomo M. An implicit \(G^1\)-conforming bi-cubic interpolation for the analysis of smooth and folded Kirchhoff-Love shell assemblies. Comput Method Appl M2021; 373: 113476. · Zbl 1506.74404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.