Bednarczuk, Ewa; Penot, Jean-Paul Metrically well-set minimization problems. (English) Zbl 0762.90073 Appl. Math. Optimization 26, No. 3, 273-285 (1992). Summary: A concept of well-posedness, or more exactly of stability in a metric sense, is introduced for minimization problems on metric spaces generalizing the notion due to Tykhonov to situations in which there is no uniqueness of solutions. It is compared with other concepts, in particular to a variant of the notion after Hadamard reformulated via a metric semicontinuity approach. Concrete criteria of well-posedness are presented, e.g., for convex minimization problems. Cited in 1 ReviewCited in 36 Documents MSC: 90C31 Sensitivity, stability, parametric optimization 49J27 Existence theories for problems in abstract spaces 90C25 Convex programming 90C48 Programming in abstract spaces Keywords:sensitivity of solutions; well-posedness; stability in a metric sense PDF BibTeX XML Cite \textit{E. Bednarczuk} and \textit{J.-P. Penot}, Appl. Math. Optim. 26, No. 3, 273--285 (1992; Zbl 0762.90073) Full Text: DOI OpenURL References: [1] Bednarczuk E (1982) On upper semicontinuity of global minima in constrained optimization problems. J Math Anal Appl 86:309-318 · Zbl 0482.90080 [2] Bednarczuk E, Penot J-P (to appear) On the positions of the notions of well-posed minimization problems. Boll Un Mat Ital · Zbl 0764.49015 [3] Chavent G (1990) A new sufficient condition for the well-posedness of nonlinear least square problems arising in identification and control, in: Optimization and Control, Proceedings IFIP Conference, Antibes 1990, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, pp 452-463 · Zbl 0702.93070 [4] ?oban MM, Kenderov PS, Revalski JP (1989) Generic well-posedness of optimization problems in topological spaces. Mathematika 36:301-324 · Zbl 0679.49010 [5] Dmitriev MG, Poleschuk VS (1972) On the regularization of a class of unstable extremal problems. USSR Comput Math and Math Phys 12:1316-1318 [6] Dolecki S, Greco G, Lechicki A (1985) Compactoid and compact filters. Pacific J Math 117:69-98 · Zbl 0511.54012 [7] Dolecki S, Rolewicz S (1978) A characterization of semicontinuity-preserving multifunctions. J. Math Anal Appl 65:26-31 · Zbl 0427.54009 [8] Furi M, Vignoli A (1970) About well-posed optimization problems for functionals in metric spaces. J Optim Theory Appl 5:225-229 · Zbl 0188.48802 [9] Furi M, Vignoli A (1970) A characterization of well-posed minimum problems in a complete metric space. J Optim Theory Appl 5:452-461 · Zbl 0184.44603 [10] Klein E, Thompson AC (1984) Theory of Correspondences, Wiley-Interscience, New York. · Zbl 0556.28012 [11] Lucchetti R (1984-1985) On the continuity of the minima for a family of constrained optimization problems. Numer Funct Anal Optim 7:349-362 · Zbl 0574.49017 [12] Lucchetti R, Patrone F (1981) A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities. Numer Funct Anal Optim 3:461-476 · Zbl 0479.49025 [13] Lucchetti R, Patrone F (1982-1983) Some properties of well-posed variational inequalities governed by linear operators. Numer Funct Anal Optim 5:341-361 · Zbl 0517.49007 [14] Lucchetti R, Patrone F (1982) Hadamard and Tykhonov well-posedness of a certain class of convex functions. J Math Anal Appl 88:204-215 · Zbl 0487.49013 [15] Ortega JM, Rheinboldt WC (1970) Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York [16] Patrone F (1987) Most convex functions are nice. Numer Funct Anal Optim 9:359-369 [17] Patrone F (1987) Well-posedness as an ordinal property. Riv Mat Pura Appl 1:95-104 · Zbl 0614.90003 [18] Penot JP (1983) Compact nets, filters and relations. J Math Anal Appl 93:400-417 · Zbl 0537.54002 [19] Penot J-P (1989) Metric regularity, openness and Lipschitzian behaviour of muitifunctions, Nonlinear Anal TMA 13:629-643 · Zbl 0687.54015 [20] Penot J-P, Volle M (1990) Inversion of real-valued functions and applications, Z Oper Res 34:117-141 · Zbl 0718.49012 [21] Revalski JP (1985) Generic properties concerning well-posed optimization problems. C R Acad Bulgare Sci 38:1431-1434 · Zbl 0576.49018 [22] Revalski JP (1987) Generic well-posedness in some classes of optimization problems. Acta Univ Carolin-Math Phys 28:117-125 · Zbl 0644.49023 [23] Tykhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Dokl Akad Nauk SSSR 151:501-504 [24] Vainberg MM (1970) Le probleme de la minimisation des fonctionelles non lineaires. C.I.M.E. IV ciclo Cremonese, Rome. [25] Zeidler E (1985) Nonlinear Functional Analysis and Its Applications III, Springer-Verlag, New York. · Zbl 0583.47051 [26] Zolezzi T (1978) On equiwellset minimum problems. Appl Math Optim 4:209-223 · Zbl 0381.90105 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.