Betancor, Jorge J.; Flores, Manuel T. A Parseval equation and a generalized finite Hankel transformation. (English) Zbl 0763.46028 Commentat. Math. Univ. Carol. 32, No. 4, 627-638 (1991). For \(\mu\geq-{1\over 2}\) a space \(S_ \mu\) of certain \(C^ \infty\)- functions on \(]0,1]\) and a sequence space \(L_ \mu\) are introduced. If \(J_ \mu\) denotes the Bessel function of first kind and order \(\mu\) and if \((\lambda_ n)_{n\in\mathbb{N}_ 0}\) denotes the positive roots of \(J_ \mu\) (arranged increasingly) then the finite Hankel transform \[ (h_ \mu^* f)(n):=2J_{\mu+1}^{-2}(\lambda_ n) \int_ 0^ 1 J_ \mu(\lambda_ n x)f(x)dx, \quad f\in S_ \mu, \quad \mu\in\mathbb{N}_ 0, \] is shown to be an isomorphism between \(S_ \mu\) and \(L_ \mu\). Then the generalized finite Hankel transform \(h_ \mu': S_ \mu'\to L_ \mu'\) is defined as the adjoint of \((h_ \mu^*)^{-1}\) and it is shown that it extends a previous definition given in the literature. Reviewer: R.Meise (Düsseldorf) MSC: 46F12 Integral transforms in distribution spaces 44A15 Special integral transforms (Legendre, Hilbert, etc.) Keywords:Bessel function of first kind; generalized finite Hankel transform PDF BibTeX XML Cite \textit{J. J. Betancor} and \textit{M. T. Flores}, Commentat. Math. Univ. Carol. 32, No. 4, 627--638 (1991; Zbl 0763.46028) Full Text: EuDML OpenURL