Rahman, Mizan; Verma, Arun Quadratic transformation formulas for basic hypergeometric series. (English) Zbl 0767.33011 Trans. Am. Math. Soc. 335, No. 1, 277-302 (1993). Goursat’s list of quadratic transformation formulas for Gauss’ hypergeometric functions, which is reproduced in “Higher transcendental functions. Vol. I. edited by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi (1953; Zbl 0051.303), has turned out to be very useful in many applications. Certain analogues of such formulas for the \(q\)-hypergeometric functions as well as for the hypergeometric functions defined over finite fields have also recently attracted new attention because of their wide applicability, say in representation theory of quantum groups and in the theory of moduli.The authors displayed explicitly the \(q\)-analogues of all the formulas in the list, complementing the formulas already presented in the book “Basic hypergeometric series” (1990; Zbl 0695.33001) by G. Gasper and M. Rahman. They based the calculations on the formulas for well-poised \(_ 2\varphi_ 1\) and very-well-poised \(_ 8\varphi_ 7\) basic hypergeometric series. Some quadratic transformation formulas of new type relating \(_{10}\varphi_ 9\) with \(_{12}\varphi_{11}\) are also given. Reviewer: T.Sasaki Cited in 8 Documents MSC: 33D05 \(q\)-gamma functions, \(q\)-beta functions and integrals 33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) Keywords:quadratic transformation; basic hypergeometric series Citations:Zbl 0051.303; Zbl 0695.33001 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] R. P. Agarwal, Generalized hypergeometric series, Uttar Pradesh Scientific Research Committee, Allahabad, India, Asia Publishing House, New York-Bombay, 1963. [2] W. A. Al-Salam and A. Verma, On quadratic transformations of basic series, SIAM J. Math. Anal. 15 (1984), no. 2, 414 – 421. · Zbl 0533.33002 · doi:10.1137/0515032 [3] George E. Andrews, On the \?-analog of Kummer’s theorem and applications, Duke Math. J. 40 (1973), 525 – 528. · Zbl 0266.33003 [4] George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic Press, New York, 1975, pp. 191 – 224. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. · Zbl 0342.33001 [5] George E. Andrews, On \?-analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7 (1976), no. 3, 332 – 336. · Zbl 0339.33007 · doi:10.1137/0507026 [6] George E. Andrews and Richard Askey, Enumeration of partitions: the role of Eulerian series and \?-orthogonal polynomials, Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 31, Reidel, Dordrecht-Boston, Mass., 1977, pp. 3 – 26. · Zbl 0381.10008 [7] George E. Andrews and Richard Askey, Another \?-extension of the beta function, Proc. Amer. Math. Soc. 81 (1981), no. 1, 97 – 100. · Zbl 0471.33001 [8] Richard Askey and James Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55. · Zbl 0572.33012 · doi:10.1090/memo/0319 [9] W. N. Bailey, Transformations of generalized hypergeometric series, Proc. London Math. Soc. (2) 29 (1929), 495-502. · JFM 55.0219.04 [10] -, Some identities involving generalized hypergeometric series, Proc. London Math. Soc. (2) 29 (1929), 503-516. · JFM 55.0219.05 [11] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. · Zbl 0011.02303 [12] -, Identities of the Rogers-Ramanujan type, London Math. Soc. (2) 50 (1949), 1-10. · Zbl 0031.39203 [13] L. Carlitz, Some formulas of F. H. Jackson, Monatsh. Math. 73 (1969), 193 – 198. · Zbl 0177.31102 · doi:10.1007/BF01300534 [14] V. G. Drinfel\(^{\prime}\)d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798 – 820. [15] A. Erdélyi, , Higher transcendental functions, vol. I, McGraw-Hill, New York, 1953. · Zbl 0051.30303 [16] George Gasper, Rogers’ linearization formula for the continuous \?-ultraspherical polynomials and quadratic transformation formulas, SIAM J. Math. Anal. 16 (1985), no. 5, 1061 – 1071. · Zbl 0579.33002 · doi:10.1137/0516079 [17] George Gasper and Mizan Rahman, Product formulas of Watson, Bailey and Bateman types and positivity of the Poisson kernel for \?-Racah polynomials, SIAM J. Math. Anal. 15 (1984), no. 4, 768 – 789. · Zbl 0545.33013 · doi:10.1137/0515060 [18] George Gasper and Mizan Rahman, Positivity of the Poisson kernel for the continuous \?-Jacobi polynomials and some quadratic transformation formulas for basic hypergeometric series, SIAM J. Math. Anal. 17 (1986), no. 4, 970 – 999. · Zbl 0599.33016 · doi:10.1137/0517069 [19] George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. · Zbl 0695.33001 [20] C. F. Gauss, Disquisitiones generales circa seriem infinitam \( 1 + \alpha \beta x/1.\gamma + \alpha (\alpha + 1)\beta (\beta + 1){x^2}/1.2\gamma (\gamma + 1) + \cdots \), Comm. Soc. Reg. Sci. Gött. Rec., 1813, Vol. II; reprinted in Werke 3 (1876), 123-162. [21] -, Nachlass, Determinato seriei nostrae per aequationem differentialem secundi ordinis, Werke 3 (1876), 207-229. [22] Édouard Goursat, Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique, Ann. Sci. École Norm. Sup. (2) 10 (1881), 3 – 142 (French). · JFM 13.0267.01 [23] A. Verma and V. K. Jain, Some transformations of basic hypergeometric functions. I, SIAM J. Math. Anal. 12 (1981), no. 6, 943 – 956. , https://doi.org/10.1137/0512080 V. K. Jain, Some transformations of basic hypergeometric functions. II, SIAM J. Math. Anal. 12 (1981), no. 6, 957 – 961. · Zbl 0469.33003 · doi:10.1137/0512081 [24] V. K. Jain, Certain transformations of basic hypergeometric series and their applications, Pacific J. Math. 101 (1982), no. 2, 333 – 349. · Zbl 0503.33003 [25] A. Verma and V. K. Jain, Transformations between basic hypergeometric series on different bases and identities of Rogers-Ramanujan type, J. Math. Anal. Appl. 76 (1980), no. 1, 230 – 269. · Zbl 0443.33004 · doi:10.1016/0022-247X(80)90076-1 [26] A. Verma and V. K. Jain, Some transformations of basic hypergeometric functions. I, SIAM J. Math. Anal. 12 (1981), no. 6, 943 – 956. , https://doi.org/10.1137/0512080 V. K. Jain, Some transformations of basic hypergeometric functions. II, SIAM J. Math. Anal. 12 (1981), no. 6, 957 – 961. · Zbl 0469.33003 · doi:10.1137/0512081 [27] A. Verma and V. K. Jain, Transformations of nonterminating basic hypergeometric series, their contour integrals and applications to Rogers-Ramanujan identities, J. Math. Anal. Appl. 87 (1982), no. 1, 9 – 44. · Zbl 0488.33001 · doi:10.1016/0022-247X(82)90151-2 [28] T. H. Koornwinder, Representations of the twisted \?\?(2) quantum group and some \?-hypergeometric orthogonal polynomials, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 1, 97 – 117. · Zbl 0681.22020 [29] Orthogonal polynomials, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 294, Kluwer Academic Publishers Group, Dordrecht, 1990. Theory and practice; Edited by Paul Nevai with the assistance of Mourad E. H. Ismail. [30] -, A second addition formula for continuous \( q\)-ultraspherical polynomials motivated by quantum groups (to appear). [31] E. Kummer, Über die hypergeometrische Reihe \( 1 + (\alpha \cdot \beta )x/1.\gamma + \cdots \), J. Reine Angew. Math. 15 (1836), 39-83 and 127-172, reprinted in Collected Papers , Springer-Verlag, Berlin and New York, vol. 2, 1975, pp. 75-172. · ERAM 015.0528cj [32] Tetsuya Masuda, Katsuhisa Mimachi, Yoshiomi Nakagami, Masatoshi Noumi, and Kimio Ueno, Representations of quantum groups and a \?-analogue of orthogonal polynomials, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 11, 559 – 564 (English, with French summary). · Zbl 0658.22010 [33] Masatoshi Noumi and Katsuhisa Mimachi, Quantum 2-spheres and big \?-Jacobi polynomials, Comm. Math. Phys. 128 (1990), no. 3, 521 – 531. · Zbl 0699.33005 [34] B. Nassrallah, Some quadratic transformations and projection formulas for basic hypergeometric series, Thesis, Carleton Univ., Ottawa, 1982. [35] B. Nassrallah and Mizan Rahman, On the \?-analogues of some transformations of nearly-poised hypergeometric series, Trans. Amer. Math. Soc. 268 (1981), no. 1, 211 – 229. · Zbl 0469.33004 [36] M. Rahman, The linearization of the product of continuous \( q\)-Jacobi polynomials, Canad. J. Math. 33 (1981), 255-284. [37] Mizan Rahman and Arun Verma, Product and addition formulas for the continuous \?-ultraspherical polynomials, SIAM J. Math. Anal. 17 (1986), no. 6, 1461 – 1474. · Zbl 0599.33017 · doi:10.1137/0517104 [38] D. B. Sears, Transformations of basic hypergeometric functions of special type, Proc. London Math. Soc. (2) 52 (1951), 467 – 483. · Zbl 0042.07503 · doi:10.1112/plms/s2-52.6.467 [39] V. N. Singh, The basic analogues of identities of the Cayley-Orr type, J. London Math. Soc. 34 (1959), 15 – 22. · Zbl 0088.27702 · doi:10.1112/jlms/s1-34.1.15 [40] Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. [41] L. L. Vaksman and Ya. S. Soĭbel\(^{\prime}\)man, An algebra of functions on the quantum group \?\?(2), Funktsional. Anal. i Prilozhen. 22 (1988), no. 3, 1 – 14, 96 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 3, 170 – 181 (1989). · Zbl 0679.43006 · doi:10.1007/BF01077623 [42] N. Ja. Vilenkin, Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R. I., 1968. [43] F. J. W. Whipple, Some transformations of generalized hypergeometric series, Proc. London Math. Soc. (2) 26 (1927), 257-272. · JFM 53.0331.03 [44] -, Algebraic proofs of the theorems of Cayley and Orr concerning the products of certain hypergeometric series, J. London Math. Soc. 2 (1927), 85-90. · JFM 53.0331.04 [45] -, On a formula implied in Orr’s theorems concerning the product of hypergeometric series, J. London Math. Soc. 4 (1929), 48-50. · JFM 55.0219.07 [46] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613 – 665. · Zbl 0627.58034 [47] -, Twisted \( SU(2)\) group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.