×

Some multiplicity results for an elastic beam equation at resonance. (English) Zbl 0776.73037

This paper deals with multiplicity results for nonlinear elastic beam equation of the type \(-d^ 4 u/dx^ 4+\pi^ 4 u+g(x,u)=e(x)\) \(0<x<1\), \(u(0)=u(1)=u''(0)=u''(1)=0\), where \(g: [0,1]\times{\mathbf R}\to{\mathbf R}\) satisfies Carathéodory condition and \(e\in L^ 2[0,1]\). By combining the Lyapunov-Schmidt procedure with the technique of connected set, we establish several multiplicity results under suitable condition.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Reiss, E. L., A. J. Callegari and D. S. Ahluwalia,Ordinary Differential Equations with Applications, Holt, Rinehart & Winston, New York (1976). · Zbl 0334.34002
[2] Usmini, R. A., A uniqueness theorems for a boundary value problem,Proc. Amer. Math. Soc.,77, 3 (1979) 329–335. · doi:10.1090/S0002-9939-1979-0545591-4
[3] Aftabizadeh, A. R., Existence and uniqueness theorems for fourth-order boundary value problems.J. Math. Anal. Appl.,116 (1986), 415–426. · Zbl 0634.34009 · doi:10.1016/S0022-247X(86)80006-3
[4] Yang Yi-song, Fourth-order two-point boundary value problems,Proc. Amer. Math. Soc.,104, 1 (1988), 175–180. · Zbl 0671.34016 · doi:10.1090/S0002-9939-1988-0958062-3
[5] Gupta, C. P., Existence and uniqueness theorems for the bending of an elastic beam equation,Applicable Analysis,26 (1988), 289–305. · Zbl 0611.34015 · doi:10.1080/00036818808839715
[6] Gupta, C. P., Existence and uniqueness results for the bending of an elastic beam equation at resonance.J. Math. Anal. Appl.,135 (1988), 208–225. · Zbl 0655.73001 · doi:10.1016/0022-247X(88)90149-7
[7] Costa, D. G. and J. V. A. Goncalves, Existence and multiplicity results for a class of nonlinear elliptic boundary value problems at resonance,J. Math. Anal. Appl.,84, 2 (1981), 328–337. · Zbl 0479.35037 · doi:10.1016/0022-247X(81)90171-2
[8] Browder, F.,Problémes Non-Linéaires, Les Presses de I’ Université de Montreal, Montreal (1986).
[9] Cao Zhi-jiang,Ordinary Differential Operators, Shanghai (1987) (in Chinese) · Zbl 1332.47018
[10] Mawhin, J., J. R. Ward and M. Willem, Necessary and sufficient conditions of a nonlinear two-point boundary value problems,Proc. Amer. Math. Soc.,93 (1985), 667–674. · Zbl 0559.34014 · doi:10.1090/S0002-9939-1985-0776200-X
[11] Zhang Shi-sheng,Fixed Point Theory and Its Application, Chongqing (1984). (in Chinese)
[12] Lin Zong-chi and Lin Su-rong, Singular perturbation on boundary value problem for a vector fourth-order nonlinear differential equation,Applied Mathematics and Mechanics (English Ed.),9, 5 (1988), 385–396.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.