Moving horizon control of linear systems with input saturation and plant uncertainty. I: Robustness. (English) Zbl 0782.93050

Summary: We present a moving feedback system, based on constrained optimal control algorithms, for linear plants with input saturation. The system is a nonconventional sampled-data system: its sampling periods vary from sampling instant to sampling instant, and the control during the sampling time is not constant but determined by the solution of an open-loop optimal control problem. This is a two-part paper. In this part, we show that the proposed moving horizon control system is robustly stable, whether the state of the plant is measurable or not. In the second part, we show that the proposed moving horizon control system is capable of following a class of reference inputs and suppressing a class of disturbances. Experimental results show that the behaviour of the moving horizon control system is superior to that resulting from some alternative control laws.


93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
93B35 Sensitivity (robustness)
93B52 Feedback control
Full Text: DOI


[1] DOI: 10.1016/0005-1098(82)90096-6 · Zbl 0479.93031 · doi:10.1016/0005-1098(82)90096-6
[2] DOI: 10.1109/37.1874 · doi:10.1109/37.1874
[3] DOI: 10.1016/0005-1098(87)90087-2 · Zbl 0621.93032 · doi:10.1016/0005-1098(87)90087-2
[4] GARCIA C. E., American Institute of Chemical Engineering Annual Meeting (1984)
[5] DOI: 10.1016/0005-1098(89)90002-2 · Zbl 0685.93029 · doi:10.1016/0005-1098(89)90002-2
[6] DOI: 10.1109/TAC.1985.1103785 · Zbl 0553.93052 · doi:10.1109/TAC.1985.1103785
[7] KEERTHI S. S., Proceedings of the 20th Annual Conference on Information Sciences and Systems pp 301– (1986)
[8] KWAKERNAAK H., Linear Optimal Control Systems (1972) · Zbl 0276.93001
[9] DOI: 10.1109/TAC.1977.1101619 · Zbl 0372.93037 · doi:10.1109/TAC.1977.1101619
[10] DOI: 10.1080/00207178308932998 · Zbl 0504.93051 · doi:10.1080/00207178308932998
[11] DOI: 10.1109/9.57020 · Zbl 0715.49036 · doi:10.1109/9.57020
[12] MEHRA R. K., Engineering Foundation Conference on Chemical Process Control II pp 287– (1982)
[13] MICHALSKA H., Proceedings of the 28th IEEE Conference on Decision and Control (1989)
[14] DOI: 10.1109/TAC.1981.1102693 · Zbl 0481.93038 · doi:10.1109/TAC.1981.1102693
[15] DOI: 10.1007/BF00940462 · Zbl 0702.90087 · doi:10.1007/BF00940462
[16] DOI: 10.1007/BF01586049 · Zbl 0749.90081 · doi:10.1007/BF01586049
[17] POLAK E., Proceedings of the 29th IEEE Conference on Decision and Control pp 2– (1990)
[18] PRETT D. M., Proceedings of the Joint Automatic Control Conference (1979)
[19] PROPOI A. I., Automatic Remote Control 24 (1963)
[20] DOI: 10.1016/0098-1354(90)87012-E · doi:10.1016/0098-1354(90)87012-E
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.