Kováčik, Ondrej; Rákosník, Jiří On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\). (English) Zbl 0784.46029 Czech. Math. J. 41(116), No. 4, 592-618 (1991). The spaces mentioned in the title are certain versions of the Lebesgue and the Sobolev spaces with variable order of integrability. The authors establish elementary properties of these spaces and prove some embedding theorems for Sobolev-type spaces. Then they apply the results to the proof of existence of a weak solution of a certain nonlinear boundary value problem. Reviewer: Sergej V. Kislyakov (St. Peterburg) Cited in 9 ReviewsCited in 931 Documents MSC: 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 35J65 Nonlinear boundary value problems for linear elliptic equations 35D30 Weak solutions to PDEs 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:Lebesgue and Sobolev spaces with variable order of integrability; embedding theorems; Sobolev-type spaces; weak solution; nonlinear boundary value problem PDF BibTeX XML Cite \textit{O. Kováčik} and \textit{J. Rákosník}, Czech. Math. J. 41(116), No. 4, 592--618 (1991; Zbl 0784.46029) Full Text: EuDML References: [1] F. E. Browder: Problémes non-linéaires. Seminaire de Mathématiques superieures. Montréal, 1966. · Zbl 0153.17302 [2] H. Hudzik: The problems of separability, duality, reflexivity and of comparision for generalized Orlicz-SoboIev space \(W^{k}_{M}(\Omega )\). Comment. Math. 21 (1979), 315-324. · Zbl 0429.46017 [3] A. Kozek: Convex integral functionals on Orlicz spaces. Comment. Math. 21 (1980), 109-135. · Zbl 0463.46023 [4] M. A. Krasnoseľskii: Topological methods in the theory of nonlinear integral equations. (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956. [5] M. A. Krasnoseľskii, Ya. B. Rutickii: Convex functions and Orlicz spaces. (Russian) Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow. 1958. [6] J.Musielak: Orlicz spaces and modular spaces. Springer-Verlag, Berlin, 1983. · Zbl 0557.46020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.