Klawonn, F.; Kruse, R. Equality relations as a basis for fuzzy control. (English) Zbl 0785.93059 Fuzzy Sets Syst. 54, No. 2, 147-156 (1993). Summary: The aim of this paper is to introduce a fuzzy control model with well- founded semantics in order to explain the concepts applied in fuzzy control. Assuming that the domains of the input and output variables for the process are endowed with equality relations, that reflect the indistinguishability of values lying closely together, the use of triangular and trapezoidal membership functions can be justified and max- \(\sqcap\) inference where \(\sqcap\) is a \(t\)-norm turns out to be a consequence of our model. Distinguishing between a functional and a relational view of the control rules it is possible to explain when defuzzification strategies like MOM or COA are appropriate or lead to undesired results. Cited in 48 Documents MSC: 93C42 Fuzzy control/observation systems Keywords:equality relation; defuzzification strategies PDF BibTeX XML Cite \textit{F. Klawonn} and \textit{R. Kruse}, Fuzzy Sets Syst. 54, No. 2, 147--156 (1993; Zbl 0785.93059) Full Text: DOI References: [1] Boverie, S.; Demaya, B.; Ketata, R.; Titli, A., Performance evaluation of fuzzy controller, (Proc. Symposium on Intelligent Components and Instruments for Control Applications. Proc. Symposium on Intelligent Components and Instruments for Control Applications, Malaga (1992)) [2] Dubois, D.; Lang, J.; Prade, H., Fuzzy sets in approximate reasoning, Part 2: Logical approaches, Fuzzy Sets and Systems, 40, 203-244 (1991) · Zbl 0722.03018 [3] Dubois, D.; Prade, H., Fuzzy sets in approximate reasoning, Part 1: Inference with possibility distributions, Fuzzy Set and Systems, 40, 143-202 (1991) · Zbl 0722.03017 [4] Dubois, D.; Prade, H., Basic issues on fuzzy rules and their application to fuzzy control, (Proc. IJCAL-91 Workshop on Fuzzy Control (1991)), 5-17 [5] Gebhardt, J.; Kruse, R., A possibilistic interpretation of fuzzy sets by the context model, (Proc. IEEE International Conference on Fuzzy Systems 1992. Proc. IEEE International Conference on Fuzzy Systems 1992, IEEE, San Diego (1992)), 1089-1096 [6] Gebhardt, J.; Kruse, R., The context model: An integrating view of vagueness and uncertainty, Internat. Approx. Reasoning (1992), (to appear) [7] Höhle, U., Monoidal closed categories, weak topoi, and generalized logics, Fuzzy Sets and Systems, 42, 15-35 (1991) · Zbl 0734.03035 [8] Höhle, U., \(M\)-valued sets and sheaves over integral commutative CL-monoids, (Rodabaugh, S. E.; Klement, E. P.; Höhle, U., Applications of Category Theory to Fuzzy Subsets (1992), Kluwer: Kluwer Dordrecht), 33-72 · Zbl 0766.03037 [9] Klawonn, F.; Kruse, R., Fuzzy control and indistinguishability (1992), Preprint, Brausschweig [10] Höhle, U.; Stout, L. N., Foundations of fuzzy sets, Fuzzy Sets and Systems, 40, 257-296 (1991) · Zbl 0725.03031 [11] Jacas, J.; Recasens, J., Eigenvectors and generators of fuzzy relations, (Proc. IEEE Internat. Conf. on Fuzzy Systems 1992 (1992), IEEE: IEEE San Diego), 687-694 · Zbl 0844.04006 [12] Klement, e. P., Construction of fuzzy σ-algebras using triangular norms, J. Math. Anal. Appl., 85, 543-565 (1982) · Zbl 0491.28003 [13] Kruse, R.; Meyer, K. D., Statistics with Vague Data (1987), Kluwer: Kluwer Dordrecht · Zbl 0663.62010 [14] Kruse, R.; Schwecke, E.; Heinsohn, J., Uncertainty and Vagueness in Knowledge Based Systems: Numerical Methods (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0755.68129 [15] (Kruse, R.; Siegel, P., Symbolic and quantitative approaches to uncertainty (1991), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0875.00072 [16] Lee, C. C., Fuzzy logic in control systems: Fuzzy logic controller, Part II, IEEE Trans. Systems Man Cybernet., 20, 419-435 (1990) · Zbl 0707.93037 [17] Ludwig, G., Die Grundstrukturen einer Physikalischen Theorie (1978), Springer-Verlag: Springer-Verlag Berlin · Zbl 0387.00010 [18] Mamdani, E. H., Applications of fuzzy algorithms for simple dynamic plant, (Proc. IEE, 121 (1974)), 1585-1588 · Zbl 1253.78014 [19] Menger, K., Geometry and positivism: A probabilistic microgeometry, (K. Menger-Selected Papers in Logic and Foundations, Didactics, Economics (1979), Reidel: Reidel Dordrecht) [20] Valverde, L., On the structure of F-indistinguishability operators, Fuzzy Sets and Systems, 17, 313-328 (1985) · Zbl 0609.04002 [21] Zadeh, L. A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Systems Man Cybernet., 3, 28-44 (1973) · Zbl 0273.93002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.