Cahen, Michel; Gutt, Simone; Rawnsley, John Quantization of Kähler manifolds. II. (English) Zbl 0788.53062 Trans. Am. Math. Soc. 337, No. 1, 73-98 (1993). Summary: [Part I, cf. J. Geom. Phys. 7, No. 1, 45-62 (1990; Zbl 0719.53044).]We use Berezin’s dequantization procedure to define a formal \(*\)-product on a dense subalgebra of the algebra of smooth functions on a compact homogeneous Kähler manifold \(M\). We prove that this formal \(*\)-product is convergent when \(M\) is a Hermitian symmetric space. Cited in 6 ReviewsCited in 66 Documents MSC: 53C55 Global differential geometry of Hermitian and Kählerian manifolds 53D50 Geometric quantization Keywords:Berezin’s dequantization; homogeneous Kähler manifold; formal \(*\)- product; hermitian symmetric space Citations:Zbl 0719.53044 PDF BibTeX XML Cite \textit{M. Cahen} et al., Trans. Am. Math. Soc. 337, No. 1, 73--98 (1993; Zbl 0788.53062) Full Text: DOI OpenURL