Case study of a nonlinear, nonconservative, nonstrictly hyperbolic system. (English) Zbl 0790.35065

The Cauchy problems for the system \(u_ t+ uu_ x=0\), \(v_ t+uv_ x=0\) and for its parabolic approximations are discussed. These systems may be viewed as a rough model of one-dimensional elastic and visco- elastic material of high density in a nearly plastic state. Using the concept of the functions with bounded variation, the author proves the existence and uniqueness of parabolic approximations and discusses their convergence to the first system. Then these problems are treated in the space of generalized functions, which gives very interesting results.


35L45 Initial value problems for first-order hyperbolic systems
35L67 Shocks and singularities for hyperbolic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
74B20 Nonlinear elasticity
74Hxx Dynamical problems in solid mechanics
Full Text: DOI


[1] Biagioni, H. A., A nonlinear theory of generalized functions, (Lecture Notes in Mathematics, Vol. 1421 (1990), Springer: Springer Berlin) · Zbl 0807.35020
[4] Brio, M., An example of a Riemann problem of the second kind, (Lindquist, W. Brent, Current progress in Hyperbolic Systems: Riemann Problems and Computations. Current progress in Hyperbolic Systems: Riemann Problems and Computations, Contemporary Mathematics, Vol. 100 (1989), American Mathematical Society: American Mathematical Society Providence, RI), 52-62 · Zbl 0696.35133
[5] Cauret, J. J.; Colombeau, J. F.; Le Roux, A. Y., Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations, J. math. Analysis Applic., 139, 552-573 (1989) · Zbl 0691.35057
[6] Cole, J., On a quasilinear parabolic equation occuring in aerodynamics, Q. appl. Math., 9, 225-236 (1951) · Zbl 0043.09902
[7] Colombeau, J. F., New Generalized Functions and Multiplication of Distributions (1984), North Holland: North Holland Amsterdam · Zbl 0761.46021
[8] Colombeau, J. F., Elementary Introduction to New Generalized Functions (1985), North Holland: North Holland Amsterdam · Zbl 0627.46049
[9] Colombeau, J. F., The elastoplastic shock problem as an example of the resolution of ambiguities in the multiplication of distributions, J. math. Phys., 30, 2273-2279 (1989) · Zbl 0711.73050
[10] Colombeau, J. F.; Le Roux, A. Y., Multiplications of distributions in elasticity and hydrodynamics, J. math. Phys., 29, 315-319 (1988) · Zbl 0646.76007
[11] Colombeau, J. F.; Le Roux, A. Y.; Noussair, A.; Perrot, B., Microscopic profiles of shock waves and ambiguities in multiplications of distributions, SIAM J. numer. Analysis, 26, 871-883 (1989) · Zbl 0674.76049
[12] Colombeau, J. F.; Oberguggenberger, M., On a hyperbolic system with a compatible quadratic term: generalized solutions, delta-waves, and multiplication of distributions, Communs partial diff. Eqns, 15, 905-938 (1990) · Zbl 0711.35028
[13] Craik, A. D.D., Wave Interaction and Fluid Flows (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0202.27203
[14] Duvaut, G.; Lions, J. L., Inequalities in Mechanics and Physics (1976), Springer: Springer Berlin · Zbl 0331.35002
[15] Hopf, E., The partial differential equation \(u_t+ uu_x = μu_{ xx } \), Communs pure appl. Math., 3, 201-230 (1950) · Zbl 0039.10403
[16] Keyfitz, B. L.; Kranzer, H. C., A viscosity approximation to a system of conservation laws with no classical Riemann solution, (Carasso, C.; Charrier, P.; Hanouzet, B.; Joly, J.-L., Nonlinear Hyperbolic Problems. Nonlinear Hyperbolic Problems, Lecture Notes in Mathematics, Vol. 1402 (1989), Springer: Springer Berlin), 185-197 · Zbl 0704.35094
[17] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and quasilinear equations of parabolic type, (Trans. Math. Monogr., 23 (1968), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0174.15403
[18] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communs pure appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[19] Le Floch, P., Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Communs partial diff. Eqns, 13, 669-727 (1988) · Zbl 0683.35049
[20] Le Floch, P., An existence and uniqueness result for two nonstrickly hyperbolic systems, (Keyfitz, B. L.; Shearer, M., Nonlinear Evolution Equations that Change Type. Nonlinear Evolution Equations that Change Type, The IMA Volumes in Mathematics and its Applications, Vol. 27 (1990), Springer: Springer Berlin), 126-138 · Zbl 0727.35083
[21] Rosinger, E. E., Generalized Solutions of Nonlinear Partial Differential Equations (1987), North Holland: North Holland Amsterdam · Zbl 0635.46033
[22] Serre, D., Les ondes planes en électromagnétisme non linéaire, Physica D, 31, 227-251 (1988) · Zbl 0736.35133
[23] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1983), Springer: Springer Berlin · Zbl 0508.35002
[24] Vol’pert, A. I., The spaces BV and quasilinear equations, Math. USSR Sb., 2, 225-267 (1967), [in English] · Zbl 0168.07402
[25] Vol’pert, A. I.; Hudjaev, S. I., Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics (1985), Martinus Nijhoff Publications: Martinus Nijhoff Publications Dordrecht · Zbl 0564.46025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.