A Cramer rule for solution of the general restricted linear equation. (English) Zbl 0796.15005

A generalization of Cramer’s rule is obtained which solves equations of the form \(Ax=b\) where \(A\) is rectangular and \(x\) is restricted to lie in a given subspace \(T\).


15A06 Linear equations (linear algebraic aspects)
Full Text: DOI


[1] Robinson S. M., Math. Mag. 43 pp 94– (1970)
[2] Robinson, S. M. 1977.Math. Assoc. Amer.313–314. Papers on Algebra
[3] DOI: 10.1016/0024-3795(82)90255-5 · Zbl 0487.15004 · doi:10.1016/0024-3795(82)90255-5
[4] DOI: 10.1016/0024-3795(82)90117-3 · Zbl 0501.15004 · doi:10.1016/0024-3795(82)90117-3
[5] DOI: 10.1080/03081088408817600 · Zbl 0544.15002 · doi:10.1080/03081088408817600
[6] DOI: 10.1016/0024-3795(86)90123-0 · Zbl 0588.15005 · doi:10.1016/0024-3795(86)90123-0
[7] DOI: 10.1016/0024-3795(89)90395-9 · Zbl 0671.15006 · doi:10.1016/0024-3795(89)90395-9
[8] Ben-Israel, A. and Greville, T. N. E. 1974. ”Generalized inverses:Theory and applications”. New York: Wiley. · Zbl 0305.15001
[9] DOI: 10.1016/0024-3795(90)90007-Y · Zbl 0703.15006 · doi:10.1016/0024-3795(90)90007-Y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.