×

Stability in a model of a delayed neural network. (English) Zbl 0796.34063

Stability of equilibrium is studied for the system \(x_ i'(t)= -x_ i(t)+ \sum^ n_{j=1} a_{ij} f[x_ j(t-\tau)]\) in terms of the eigenvalues of matrix \(A=(a_{ij})\). For a scalar case a bifurcation analysis is performed.

MSC:

34K20 Stability theory of functional-differential equations
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
92B20 Neural networks for/in biological studies, artificial life and related topics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B?lair, J., and Mackey, M. C. (1989). Consumer memory and price fluctuations in commodity markets: An integrodifferential model.J. Dynam. Diff. Eq. 1, 299-325. · Zbl 0682.34050 · doi:10.1007/BF01053930
[2] Braddock, R. D., and van den Driessche, P. (1976). On the stability of differential-difference equations.J. Austral. Math. Soc. (Ser. B) 19, 358-370. · Zbl 0356.34090 · doi:10.1017/S0334270000001211
[3] Franke, J. M., and Stech, H. W. (1991). Extensions of an algorithm for the analysis of nongeneric Hopf bifurcations, with applications to delay-differential equations. In Busenberg, S., and Martelli, M. (eds.),Delay Differential Equations and Dynamical Systems, Springer, New York, pp. 161-175. · Zbl 0739.34032
[4] Haddock, J. R., and Terj?ki, J. (1983). Liapunov-Razumikhin functions and an invariance principle for functional differential equation.J. Diff. Eq. 48, 95-122. · Zbl 0531.34058 · doi:10.1016/0022-0396(83)90061-X
[5] Hale, J. K. (1977).Theory of Functional Differential Equations, Springer, New York. · Zbl 0352.34001
[6] Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons.Proc. Natl. Acad. Sci. 81, 3088-3092. · Zbl 1371.92015 · doi:10.1073/pnas.81.10.3088
[7] Kurzweil, J. (1967). Invariant manifolds for flows. In Hale, J., and LaSalle, J. (eds.),Differential Equations and Dynamical Systems, Academic Press, New York, pp. 431-468. · Zbl 0189.39701
[8] Lancaster, P., and Tismenetsky, M. (1985).The Theory of Matrices, 2nd ed., Academic Press, Orlando, FL. · Zbl 0558.15001
[9] L?meray, E. M. (1987). Le quatri?me algorithme naturel.Proc. Edinburgh Math. Soc. 16, 13-35. · doi:10.1017/S0013091500032223
[10] Losson, J. (1991).Multistability and Probabilistic properties of Differential Equations, M.S. thesis (Physics), McGill University, Montreal.
[11] Mackey, M. C., and Milton, J. (1987). Dynamical diseases.Ann. N.Y. Acad. Sci. 504, 16-32. · doi:10.1111/j.1749-6632.1987.tb48723.x
[12] Mahaffy, J. (1982). A test for stability of linear differential delay equations.Q. Appl. Math. 40, 193-202. · Zbl 0499.34049
[13] Mallet-Paret, J. (1988). Morse decompositions for delay-differential equations.J. Diff. Eq. 23, 293-314. · Zbl 0648.34082
[14] Marcus, C. M., and Westervelt, R. M. (1989). Stability of analog neural networks with delay.Phys. Rev. A 39, 347-359. · doi:10.1103/PhysRevA.39.347
[15] Palmer, R. (1989). Neural nets. In Stein, D. (ed.),Lectures in the Sciences of Complexity, Addison-Wesley, Redwood City, CA.
[16] Stech, H. (1985). Hopf bifurcation calculations for functional differential equations.J. Math. Anal. Appl. 109, 472-491. · Zbl 0592.34048 · doi:10.1016/0022-247X(85)90163-5
[17] Walther, H.-O. (1991). An invariant manifold of slowly oscillating solutions for x(t)=?x(t)+f(x(t?1)).J. reine angew. Math. 414, 67-112. · Zbl 0708.34036 · doi:10.1515/crll.1991.414.67
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.