A feature space for edgels in images with landmarks. (English) Zbl 0797.68177

Summary: In many current medical applications of image analysis, objects are detected and delimited by boundary curves or surfaces. Yet the most effective multivariate statistics available pertain to labeled points (landmarks) only. In the finite-dimensional feature space that landmarks support, each case of a data set is equivalent to a deformation map deriving it from the average form. This paper introduces a new extension of the finite-dimensional spline-based approach for incorporating edge information. In this implementation edgels are restricted to landmark loci: they are interpreted as pairs of landmarks at infinitesimal separation in a specific direction. The effect of changing edge direction is a singular perturbation of the thin-plate spline for the landmarks alone. An appropriate normalization yields a basis for image deformations corresponding to changes of edge direction without landmark movement; this basis complements the basis of landmark deformations ignoring edge information. We derive explicit formulas for these edge warps, evaluate the quadratic form expressing bending energies of their formal combinations, and show the resulting spectrum of edge features in typical scenes. These expressions will aid all investigations into medical images that entail comparisons of anatomical scene analyses to a normative or typical form.


68U10 Computing methodologies for image processing
Full Text: DOI


[1] J. Duchon, ?Interpolation des fonctions de deux variables suivant la principe de la flexion des plaques minces,?RAIRO Anal. Numér., vol. 10, pp. 5-12, 1976.
[2] J. Meinguet, ?Multivariate interpolation at arbitrary points made simple,?Z. Ange. Math. Phys. vol. 30, pp. 292-304, 1979. · Zbl 0428.41008
[3] D. Terzopoulos, ?Multilevel computational processes for visual surface reconstruction,?Comput. Vis., Graph., Image Process., vol. 24, pp. 52-96, 1983.
[4] A. Witkin, D. Terzopoulos, and M. Kass, ?Signal matching through scale space,?Intl. J. Comput. Vis., vol. 1, pp. 133-144, 1987.
[5] F.L. Bookstein,The Measurement of Biological Shape and Shape Change, Springer-Verlag: Berlin, 1978, chap. 5. · Zbl 0376.92003
[6] F.L. Bookstein,Morphometric Tools for Landmark Data, Cambridge University Press: New York, 1991. · Zbl 0770.92001
[7] F.L. Bookstein, ?Principal warps: thin-plate splines and the decomposition of deformations,?IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-11, pp. 567-585, 1989. · Zbl 0691.65002
[8] S. Timoshenko and S. Woinowsky-Krieger,Theory of Plates and Shells, 2nd ed., McGraw-Hill: New York, 1959. · Zbl 0114.40801
[9] C.R. Rao,Linear Statistical Inference and Its Applications, 2nd ed., John Wiley: New York, 1973, p. 33. · Zbl 0256.62002
[10] S. Timoshenko and S. Woinowsky-Krieger,Theory of Plates and Shells, 2nd ed., McGraw-Hill: New York, 1959, pp. 287-289. · Zbl 0114.40801
[11] F.L. Bookstein and W.D.K. Green, ?A feature space for derivatives of deformations,? inProceedings of the Thirteenth International Conference on Information Processing in Medical Imaging, H.H. Barrett and A.F. Gmitro, eds., Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1993, to appear.
[12] F.L. Bookstein and W.D.K. Green, ?Edge Information at Landmarks in Medical Images,? Biomedical Communications, Univ. of Michigan, Ann Arbor, MI, videotape BMC 818, 1992; also presented at the 1992 Conf. on Visualization and Biomedical Computing, Chapel Hill, NC, October 1992.
[13] K.V. Mardia, J. Kent, and A. Walder, ?Statistical shape models in image analysis,? inComputing Science and Statistics: Proc. 23rd Conf. on the Interface, E.M. Keramidas, ed., Interface Foundation of North America: Fairfax Station, VA, 1991, pp. 550-557.
[14] U. Grenander, Y. Chow, and D. Keenan,Hands: A Pattern Theoretic Study of Biological Shapes, Springer-Verlag: Berlin, 1991. · Zbl 0808.68018
[15] F.L. Bookstein and W. Jaynes, ?Thin-Plate Splines and the Analysis of Biological Shape,? Biomedical Communications, Univ. of Michigan, videotape BMC 650, 1990; also presented at 1st Conf. on Visualization in Biomedical Computing, Atlanta, GA, May 1990.
[16] F.L. Bookstein,Morphometric Tools for Landmark Data, Cambridge University Press: New York, 1991, appendix 1.3. · Zbl 0770.92001
[17] F.L. Bookstein, ?Thin-plate splines and the atlas problem for biomedical images,? inInformation Processing in Medical Imaging, A.C.F. Colchester and D. Hawkes, eds., Springer-Verlag: Berlin, 1991, pp. 326-342.
[18] A.C. Evans, W. Dai, L. Collins, P. Neelin, and S. Marrett, ?Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuranatomical and functional analysis,?Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1445, pp. 236-246, 1991.
[19] P.H.A. Sneath, ?Trend-surface analysis of transformation grids,?J. Zool., vol. 151, pp. 65-122, 1967.
[20] T. Greitz, C. Bohm, S. Holte, and L. Eriksson, ?A computerized brain atlas: construction, anatomical content, and some applications,?J. Comput Assist. Tomog., vol. 15, pp. 26-38, 1991.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.