×

Uniform harmonic approximation on Riemannian manifolds. (English) Zbl 0806.31004

This paper deals with uniform approximation by harmonic functions on closed subsets of a Riemannian manifold. The purpose is to generalize results previously known in the context of Riemann surfaces or Euclidean space \(\mathbb{R}^ n\).
After a substantial introduction to harmonic functions on Riemannian manifolds the authors establish several results concerning localization and approximation. Let \(F\) be a closed subset of an orientable Riemannian manifold \(\Omega\), and et \(H(F)\) denote collection of functions on \(F\) which can be extended to a harmonic function on some open set containing \(F\). Further, let \(\overline{H}(F)\) denote the collection of functions in \(C(F)\) which can be uniformly approximated by functions in \(H(F)\), and let \(A(F)= C(F)\cap H(F^ 0)\). The localization theorem is as follows. Let \(f\in C(F)\). Then \(f\in \overline{H}(F)\) if and only if for each point \(p\) in \(F\) there is a compact neighbourhood \(K_ p\) of \(p\) such that the restriction of \(f\) to \(F\cap K_ p\) belongs to \(\overline{H} (F\cap K_ p)\). This is then used to prove that \(A(F)= \overline{H} (F)\) if and only if \(\Omega\setminus F\) and \(\Omega \setminus F^ 0\) are thin at the same points.
The paper also considers the possibility of approximation on \(F\) by functions which are harmonic on \(\Omega\) except for isolated singularities lying in a preassigned set.

MSC:

31C12 Potential theory on Riemannian manifolds and other spaces
41A30 Approximation by other special function classes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] [A] S. Agmon,Unicité et Convexité dans les problèmes differentiels, Sem. Math. Sup. 13, Les Presses de l’Université de Montréal, 1966. · Zbl 0147.07702
[2] Bagby, T., A Runge theorem for harmonic functions on closed subsets of Riemann surfaces, Proc. Amer. Math. Soc., 103, 160-164 (1988) · Zbl 0656.31001
[3] Bagby, T.; Gauthier, P. M., Approximation by harmonic functions on closed subsets of Riemann surfaces, J. Analyse Math., 51, 259-284 (1988) · Zbl 0671.30037
[4] Bauer, H., Harmonische Räume und ihre Potentialtheorie (1966), Berlin: Springer-Verlag, Berlin · Zbl 0142.38402
[5] [Ben] C.Bensouda,Approximations harmoniques sur les fermés en théorie axiomatique de Brelot, Thèse, Université Mohammed V (1988).
[6] Bers, L.; John, F.; Schechter, M., Partial Differential Equations (1964), New York: Interscience Publishers, Wiley, New York · Zbl 0126.00207
[7] Bliedtner, J.; Hansen, W., Simplicial cones in potential theory, Inv. Math., 29, 83-110 (1975) · Zbl 0308.31011
[8] Bliedtner, J.; Hansen, W., Simplicial cones in potential theory II. Approximation theorems, Inv. Math., 46, 255-275 (1978) · Zbl 0369.31005
[9] Boivin, A.; Gauthier, P. M., Approximation harmonique sur les surfaces de Riemann, Canadian J. Math., 36, 1-8 (1984) · Zbl 0509.31003
[10] Brelot, M., Lectures on Potential Theory (1967), Bombay: Tata Institute of Fundamental Research, Bombay · Zbl 0257.31001
[11] Chavel, I., Eigenvalues in Riemannian geometry (1984), New York: Academic Press, New York · Zbl 0551.53001
[12] de la Pradelle, A., Approximation et caractère de quasi-analyticité dans la théorre axiomatique des fonctions harmoniques, Ann. Inst. Fourier (Grenoble), 17, 383-399 (1967) · Zbl 0153.15501
[13] [dP] N. du Plessis,An Introduction to Potential Theory, Hafner, 1970. · Zbl 0208.13604
[14] Debiard, A.; Gaveau, B., Potentiel fin et algèbres de fonctions analytiques I, J. Functional Analysis, 16, 289-304 (1974) · Zbl 0297.31004
[15] Dufresnoy, A.; Gauthier, P. M.; Ow, W. H., Uniform approximation on closed sets by solutions of elliptic partial differential equations, Complex Variables, 6, 235-247 (1986) · Zbl 0607.35032
[16] [Fo] G. Folland,Introduction to Partial Differential Equations, Princeton University Press, 1976. · Zbl 0325.35001
[17] Fuglede, B., Finely Harmonic Functions (1972), Berlin: Springer-Verlag, Berlin · Zbl 0248.31010
[18] Fuglede, B., Localization in fine potential theory and uniform approximation by subharmonic functions, J. Functional Analysis, 49, 57-72 (1982) · Zbl 0503.31003
[19] Gauthier, P. M.; Goldstein, M.; Ow, W. H., Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc., 28, 2, 71-83 (1983) · Zbl 0525.31002
[20] Gauthier, P. M.; Hengartner, W.; Ciesielski, Z.; Musielak, J., Uniform approximation on closed sets by functions analytic on a Riemann surface, Approximation Theory, 63-70 (1975), Dordrecht: Reidel, Dordrecht · Zbl 0322.30034
[21] [GH2] P. M. Gauthier and W. Hengartner,Approximation uniforme qualitative sur des ensembles non bornés, Les Presses de l’Université de Montréal, 1982. · Zbl 0482.30028
[22] [GL] P. M. Gauthier and S. Ladouceur, to appear.
[23] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Berlin: Springer-Verlag, Berlin · Zbl 0562.35001
[24] Hervé, R.-M., Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiels, Ann. Inst. Fourier (Grenoble), 12, 415-471 (1962) · Zbl 0101.08103
[25] Hervé, R.-M., Quelques propriétés des fonctions surharmoniques associées à une équation uniformément elliptique de la formeLu=−Σ_i∂/∂x_i(Σ_ja_ij∂u/∂x_j)=0, Ann. Inst. Fourier (Grenoble), 15, 215-224 (1965) · Zbl 0139.06502
[26] [L] M. Labrèche,De l’approximation harmonique uniforme, Thèse, Université de Montréal, 1982.
[27] Littman, W.; Stampacchia, G.; Weinberger, H., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa 3, 17, 43-77 (1963) · Zbl 0116.30302
[28] Nakai, M., Infinite boundary value problems for second order elliptic partial differential equations, J. Fac. Sci. Tokyo, Ser. 1A, 17, 101-121 (1970) · Zbl 0211.41401
[29] Nakai, M.; Sario, L., Existence of biharmonic Green’s functions, Proc. London Math. Soc., 36, 3, 337-368 (1978) · Zbl 0374.31005
[30] Nakai, M.; Sario, L., Harmonic functionals on open Riemann surfaces, Pacific J. Math., 93, 147-161 (1981) · Zbl 0417.30035
[31] Narasimhan, R., Analysis on Real and Complex Manifolds (1985), Amsterdam: North-Holland, Amsterdam · Zbl 0583.58001
[32] Protter, M. H., Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95, 81-91 (1960) · Zbl 0094.07901
[33] [R] H. Royden,The growth of a fundamental solution of an elliptic divergence structure equation, Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Polya, Stanford University Press, 1962, pp.333-340. · Zbl 0152.31101
[34] Rodin, B.; Sario, L., Principal Functions (1968), New York: van Nostrand, New York · Zbl 0159.10701
[35] Sario, L.; Nakai, M., Classification Theory of Riemann Surfaces (1970), Berlin: Springer-Verlag, Berlin · Zbl 0199.40603
[36] Sario, L.; Nakai, M.; Wang, C.; Chung, L. O., Classification Theory of Riemannian Manifolds (1977), Berlin: Springer-Verlag, Berlin · Zbl 0355.31001
[37] Scheinberg, S., Uniform approximation by meromorphic functions having prescribed poles, Math. Ann., 243, 83-93 (1979) · Zbl 0393.30031
[38] Serrin, J., Removable singularities of solutions of elliptic equations, Arch. Rational Mech. Anal., 17, 67-78 (1964) · Zbl 0135.15601
[39] Shaginyan, A. A., Tangential harmonic and gradient approximations, Doklady Acad. Sci. Arm. SSR, 77, 3-5 (1983) · Zbl 0535.31001
[40] Shaginyan, A. A., On tangential harmonic approximation and some related problems, Complex Analysis I, 280-286 (1987), Heidelberg: Springer-Verlag, Heidelberg · Zbl 0647.31002
[41] Vitushkin, A. G., Analytic capacity of sets and problems in approximation theory, Uspehi Mat. Nauk, 22, 141-199 (1967) · Zbl 0157.39402
[42] Zalcman, L., Analytic Capacity and Rational Approximation (1968), Berlin: Springer-Verlag, Berlin · Zbl 0171.03701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.