Kent, John T. The complex Bingham distribution and shape analysis. (English) Zbl 0806.62040 J. R. Stat. Soc., Ser. B 56, No. 2, 285-299 (1994). Let \({\mathfrak z}\) be a \(k\)-dimensional complex vector and let \({\mathfrak C}S^{k-1}= \{{\mathfrak z}\): \(|{\mathfrak z}|=1\}\) denote the unit complex sphere in \({\mathfrak C}^ k\). The complex Bingham distribution on \({\mathfrak C}S^{k-1}\) is defined by the probability density function \(f({\mathfrak z})= c(A)^{-1}\exp {\mathfrak z}^* A{\mathfrak z}\), \({\mathfrak z}\in {\mathfrak C}S^{k-1}\), where \({\mathfrak z}^*\) is the complex conjugate of the transpose of \({\mathfrak z}\). \(c(A)\) is a normalizing constant, and the parameter matrix \(A\) is a \(k\times k\) Hermitian matrix. Properties of this distribution are studied and statistical applications considered. Reviewer: K.S.Miller (Rye Brook) Cited in 1 ReviewCited in 43 Documents MSC: 62H10 Multivariate distribution of statistics 62H99 Multivariate analysis 60E99 Distribution theory Keywords:shape analysis; unit complex sphere; complex Bingham distribution; Hermitian matrix PDF BibTeX XML Cite \textit{J. T. Kent}, J. R. Stat. Soc., Ser. B 56, No. 2, 285--299 (1994; Zbl 0806.62040)