×

The complex Bingham distribution and shape analysis. (English) Zbl 0806.62040

Let \({\mathfrak z}\) be a \(k\)-dimensional complex vector and let \({\mathfrak C}S^{k-1}= \{{\mathfrak z}\): \(|{\mathfrak z}|=1\}\) denote the unit complex sphere in \({\mathfrak C}^ k\). The complex Bingham distribution on \({\mathfrak C}S^{k-1}\) is defined by the probability density function \(f({\mathfrak z})= c(A)^{-1}\exp {\mathfrak z}^* A{\mathfrak z}\), \({\mathfrak z}\in {\mathfrak C}S^{k-1}\), where \({\mathfrak z}^*\) is the complex conjugate of the transpose of \({\mathfrak z}\). \(c(A)\) is a normalizing constant, and the parameter matrix \(A\) is a \(k\times k\) Hermitian matrix. Properties of this distribution are studied and statistical applications considered.

MSC:

62H10 Multivariate distribution of statistics
62H99 Multivariate analysis
60E99 Distribution theory
PDF BibTeX XML Cite