×

A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems. (English) Zbl 0809.49017

For the following type of variational problems
\(\min \int_ \Omega W(\nabla y(x))dx\),
\(\Omega\subset \mathbb{R}^ n\) open and bounded, \(y: \Omega\to \mathbb{R}\), \(y(x)\Bigl|_{\partial\Omega}= F.x\), \(F\in \mathbb{R}^ n\),
\(W\) continuous and bounded,
those integrands \(W\) are determined for which the minimum is not attained. The result generalizes a large number of known facts and counterexamples. The behavior of the minimizing sequences in the case of nonattainment is described. Two kind of proofs (depending on the use of Young measures) are presented.
Reviewer: E.Iwanow (Wien)

MSC:

49K10 Optimality conditions for free problems in two or more independent variables
49J10 Existence theories for free problems in two or more independent variables
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chipot, Numerical approximations in variational problems with potential wells (1990)
[2] DOI: 10.1007/BF00251759 · Zbl 0673.73012
[3] DOI: 10.1016/0362-546X(93)90138-I · Zbl 0784.49022
[4] DOI: 10.1016/0362-546X(93)90137-H · Zbl 0784.49021
[5] Tartar, Proc. Roy. Soc. Edinburgh Sect. A 115 pp 193– (1990) · Zbl 0774.35008
[6] DOI: 10.1007/BF01445160 · Zbl 0686.73018
[7] Tartar, In NATO Advanced Study Institute Series C111 (1983)
[8] DOI: 10.1007/BF00276295 · Zbl 0585.49002
[9] DOI: 10.1098/rsta.1992.0013 · Zbl 0758.73009
[10] Tartar, In Nonlinear Analysis and Mechanics: Heriot-Watt symposium IV pp 136– (1979)
[11] DOI: 10.1007/BF00281246 · Zbl 0629.49020
[12] DOI: 10.1007/BF00375439 · Zbl 0786.73066
[13] DOI: 10.1007/BF01209147 · Zbl 0791.35030
[14] Ball, Partial differential equations and continuum models of phase transitions, 344 pp 207– (1989)
[15] Stein, Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[16] DOI: 10.1007/BF00376811 · Zbl 0811.49030
[17] Rybka, Proc. Roy. Soc. Edinburgh Sect. A 121 pp 101– (1992) · Zbl 0758.73004
[18] Roitburd, Solid State Physics 33 pp 317– (1978)
[19] Roitburd, Soviet Phys. Solid State 10 pp 2870– (1969)
[20] Raymond, Proc. Roy. Soc. Edinburgh Sect. A 107 pp 43– (1987) · Zbl 0628.49006
[21] Pedregal, Diff. and Int. Equations 7 pp 57– (1994)
[22] Morrey, Multiple integrals in the calculus of variations (1966) · Zbl 0142.38701
[23] Maxwell, Nature XI (1890)
[24] Mascolo, J. Math. Pures Appl. 62 pp 349– (1983)
[25] Marcellini, Mathematical Theories of Optimization (1983) · Zbl 0552.49012
[26] Marcellini, Rend. Mat. 13 pp 271– (1980)
[27] Mania, Boll. Vn. Mat. 13 pp 147– (1934)
[28] DOI: 10.1080/01418619208201585
[29] Khatchaturyan, Soviet Phys. JETP 29 pp 557– (1969)
[30] Khatchaturyan, Theory of Structural Transformations in Solids (1983)
[31] Khatchaturyan, Soviet Phys – Solid State 8 pp 2163– (1967)
[32] Fonseca, J. Math. Pures Appl. 67 pp 175– (1988)
[33] Ferguson, Mathematical Statistics. A decision theoretic approach (1967)
[34] DOI: 10.1007/BF00126984 · Zbl 0324.73067
[35] Ekeland, Analyse Convexe et Problèmes Variationnels (1974) · Zbl 0281.49001
[36] Dacorogna, Direct Methods in the Calculus of Variations (1988) · Zbl 0703.49001
[37] DOI: 10.1007/BF01385808 · Zbl 0712.65063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.