×

Nonlinear chains and Painlevé equations. (English) Zbl 0812.34030

Summary: ODE systems which define a periodically closed sequence of Bäcklund transformations (BT) and which are equivalent to the Painlevé equations \(P_ 2- P_ 6\) are presented. Transformation properties of Painlevé equations can be easily derived from the discrete symmetries of these systems.

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leningrad Math. J., 2, 377 (1991), English transl. in
[2] Veselov, A. P.; Shabat, A. B., Funct. Anal. Appl., 27, no. 2, 1 (1993)
[3] Flaschka, H., J. Math. Phys., 21, 1016 (1980) · Zbl 0446.34032
[4] Flaschka, H.; Newell, A., Commun. Math. Phys., 76, 67 (1980)
[5] Calogero, F.; Degasperis, A., Spectral Transforms and Solitons (1982), North-Holland: North-Holland Amsterdam · Zbl 0501.35072
[6] Lukashevich, N. A., Diff. Ur., 3, 771 (1967) · Zbl 0152.28101
[7] Lukashevich, N. A., Diff. Ur., 7, 1124 (1971) · Zbl 0226.34004
[8] Gromak, V. I., Diff. Ur., 9, 2082 (1973) · Zbl 0275.34002
[9] Gromak, V. I., Diff. Ur., 11, 373 (1975) · Zbl 0313.34006
[10] Gromak, V. I., Diff. Ur., 12, 740 (1976) · Zbl 0357.34004
[11] Fokas, A. S.; Yortsos, Y. C., Lett. Nuovo Cimento, 30, 539 (1980)
[12] Gromak, V. I.; Lukashevich, N. A., Diff. Ur., 18, 419 (1982)
[13] Airault, H., Stud. Appl. Math., 61, 33 (1979)
[14] Boiti, M.; Pempinelli, F., Nuovo Cimento, 51 B, 70 (1979)
[15] Boiti, M.; Pempinelli, F., Nuovo Cimento, 56 B, 148 (1980)
[16] Fokas, A. S.; Ablowitz, M. J., J. Math. Phys., 23, 2033 (1982) · Zbl 0504.34022
[17] Bassom, A. P.; Clarkson, P. A.; Hicks, A. C.; McLeod, J. B., Proc. Math. Phys. Sci., 437, 1 (1992)
[18] Ablowitz, M. J.; Segur, H., Solitons and Inverse Scattering Transform (1980), SIAM: SIAM Philadelphia · Zbl 0299.35076
[19] Gromak, V. I.; Lukashevich, N. A., Analytical properties of the Painlevé equations solutions (1990), Universitetskoe: Universitetskoe Minsk · Zbl 0752.34003
[20] Mug̃an, U.; Fokas, A. S., J. Math. Phys., 33, 2031 (1992) · Zbl 0761.34007
[21] Adler, V. E., Funct. Anal. Appl., 27, no. 2, 79 (1993) · Zbl 0812.58072
[22] Zakharov, V. E.; Shabat, A. B., Funct. Anal. Appl., 13, 13 (1979)
[23] Novikov, S. P., Funct. Anal. Appl., 8, 54 (1974)
[24] Its, A. R.; Novokshenov, V. Yu., The Isomonodromic Deformation Method in the Theory of Painlevé equation, Lecture Notes in Mathematics, Vol. 1191 (1986) · Zbl 0592.34001
[25] Ince, E. L., Ordinary Differential Equations (1947), New York · Zbl 0063.02971
[26] Okamoto, K., Math. Ann., 275, 221 (1986) · Zbl 0589.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.