Adler, V. E. Nonlinear chains and Painlevé equations. (English) Zbl 0812.34030 Physica D 73, No. 4, 335-351 (1994). Summary: ODE systems which define a periodically closed sequence of Bäcklund transformations (BT) and which are equivalent to the Painlevé equations \(P_ 2- P_ 6\) are presented. Transformation properties of Painlevé equations can be easily derived from the discrete symmetries of these systems. Cited in 1 ReviewCited in 38 Documents MSC: 34C20 Transformation and reduction of ordinary differential equations and systems, normal forms 34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) 34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. Keywords:transformation properties; periodically closed sequence of Bäcklund transformations; Painlevé equations; discrete symmetries PDF BibTeX XML Cite \textit{V. E. Adler}, Physica D 73, No. 4, 335--351 (1994; Zbl 0812.34030) Full Text: DOI Digital Library of Mathematical Functions: §32.2(v) Symmetric Forms ‣ §32.2 Differential Equations ‣ Properties ‣ Chapter 32 Painlevé Transcendents References: [1] Leningrad Math. J., 2, 377 (1991), English transl. in [2] Veselov, A. P.; Shabat, A. B., Funct. Anal. Appl., 27, no. 2, 1 (1993) [3] Flaschka, H., J. Math. Phys., 21, 1016 (1980) [4] Flaschka, H.; Newell, A., Commun. Math. Phys., 76, 67 (1980) [5] Calogero, F.; Degasperis, A., Spectral Transforms and Solitons (1982), North-Holland: North-Holland Amsterdam [6] Lukashevich, N. A., Diff. Ur., 3, 771 (1967) [7] Lukashevich, N. A., Diff. Ur., 7, 1124 (1971) [8] Gromak, V. I., Diff. Ur., 9, 2082 (1973) [9] Gromak, V. I., Diff. Ur., 11, 373 (1975) [10] Gromak, V. I., Diff. Ur., 12, 740 (1976) [11] Fokas, A. S.; Yortsos, Y. C., Lett. Nuovo Cimento, 30, 539 (1980) [12] Gromak, V. I.; Lukashevich, N. A., Diff. Ur., 18, 419 (1982) [13] Airault, H., Stud. Appl. Math., 61, 33 (1979) [14] Boiti, M.; Pempinelli, F., Nuovo Cimento, 51 B, 70 (1979) [15] Boiti, M.; Pempinelli, F., Nuovo Cimento, 56 B, 148 (1980) [16] Fokas, A. S.; Ablowitz, M. J., J. Math. Phys., 23, 2033 (1982) [17] Bassom, A. P.; Clarkson, P. A.; Hicks, A. C.; McLeod, J. B., Proc. Math. Phys. Sci., 437, 1 (1992) [18] Ablowitz, M. J.; Segur, H., Solitons and Inverse Scattering Transform (1980), SIAM: SIAM Philadelphia · Zbl 0299.35076 [19] Gromak, V. I.; Lukashevich, N. A., Analytical properties of the Painlevé equations solutions (1990), Universitetskoe: Universitetskoe Minsk · Zbl 0752.34003 [20] Mug̃an, U.; Fokas, A. S., J. Math. Phys., 33, 2031 (1992) [21] Adler, V. E., Funct. Anal. Appl., 27, no. 2, 79 (1993) [22] Zakharov, V. E.; Shabat, A. B., Funct. Anal. Appl., 13, 13 (1979) [23] Novikov, S. P., Funct. Anal. Appl., 8, 54 (1974) [24] Its, A. R.; Novokshenov, V. Yu., The Isomonodromic Deformation Method in the Theory of Painlevé equation, Lecture Notes in Mathematics, Vol. 1191 (1986) · Zbl 0592.34001 [25] Ince, E. L., Ordinary Differential Equations (1947), New York · Zbl 0063.02971 [26] Okamoto, K., Math. Ann., 275, 221 (1986) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.