×

Complete convergence and almost sure convergence of weighted sums of random variables. (English) Zbl 0814.60026

The main aim of this paper is to give a general treatment of complete convergence of weighted sums of independent random variables (i.r.v.’s). A general results on complete convergence under some very relaxed conditions is \[ \sum^ \infty_{n=1} n^{r-2} P \left \{\Bigl | \sum^ \infty_{i= -\infty} X_{ni} \Bigr | \geq \varepsilon \right\} < \infty \quad \text{for every }\varepsilon > 0, \] where \(\mu>1\), \((X_{ni}\), \(-\infty < i < \infty)\) is a sequence of i.r.v.’s for each \(n \geq 1\). This result is used in the study of complete and almost sure (a.s.) convergence of weighted sums of i.r.v.’s. We give only the next interesting result: Let \((X,X_ n,\;n \geq 1)\) be a sequence of i.i.d. r.v.’s with \(E | X |^ p < \infty\) for some \(p \geq 1\) and \(EX = 0\). Let \((i_ n,\;n \geq 1)\) be a sequence of positive integers and \((a_{ni};\;1 \leq i \leq i_ n\), \(n \geq 1)\) an array of real numbers satisfying: (1) \(i_ n = O(n)\); (2) \(\sup_{n,i} | a_{ni} | < \infty\); (3) \(\sum^{i_ n}_{i=1} a^ 2_{ni} = O(n^ \delta)\) for some \(\delta < \min \{1,2/p\}\). Then \[ \lim_{n \to \infty}n^{-1/p} \sum^{i_ n}_{i=1} a_{ni} X_ i = 0 \text{ a.s.}. \]

MSC:

60F15 Strong limit theorems
60E15 Inequalities; stochastic orderings
Full Text: DOI

References:

[1] Asmussen, S. and Kurtz, T.G. (1980). Necessary and sufficient conditions for complete convergence in the Law of large numbers.Ann. Prob. 8, 176–182. · Zbl 0426.60026 · doi:10.1214/aop/1176994835
[2] Azalarov, T. A., and Volodin, N. A. (1981). Laws of large numbers for identically distributed Banach-space valued random variables.Theory Prob. Appl. 26, 573–580. · Zbl 0487.60009 · doi:10.1137/1126062
[3] Baum, L. B., and Katz, M.. (1965). Convergence rates in the law of large numbers.Trans. Amer. Math. Soc. 120, 108–123. · Zbl 0142.14802 · doi:10.1090/S0002-9947-1965-0198524-1
[4] Bingham, N. H. (1984a). On Borel and Euler summability.J. Lond. Math. Soc., II. Ser.29, 141–146. · doi:10.1112/jlms/s2-29.1.141
[5] Bingham, N. H. (1984b). Tauberian theorems for summability methods of random-walk type.J. Lond. Math. Soc. 30, 281–287. · doi:10.1112/jlms/s2-30.2.281
[6] Bingham, N. H. (1984c). On Valiron and circle convergence.Math. Z. 186, 273–286. · doi:10.1007/BF01161809
[7] Bingham, N. H. (1985). On Tauberian theorems in probability theory.Nieuw Arch. Wiskd. IV. Ser.3, 157–166. · Zbl 0619.40003
[8] Bingham, N. H. (1986). Extensions to the strong law. (Reuter Festschrift) Supplement toAdv. Appl. Prob. pp. 27–36. · Zbl 0615.60025
[9] Bingham, N. H. (1989). Moving averages. In: Edgar, G. A., Sucheston, L. (eds.), Pro. Conf. on Almost everywhere convergence, pp. 131–144. Academic Press, Boston, Massachusetts. · Zbl 0684.60023
[10] Bingham, N. H., and Maejima, M. (1985). Summability methods and almost convergence.Z. Wahrsch. verw. Geb. 68, 383–392. · Zbl 0551.60037 · doi:10.1007/BF00532647
[11] Bingham, N. H., and Tenenbaum, M. (1986). Riesz and Valiron means and fractional moments.Math. Proc. Cam. Philos. Soc. 99, 143–149. · Zbl 0585.40006 · doi:10.1017/S0305004100064033
[12] Chow, Y. S. (1966). Some convergence theorems for independent random variables.Ann. Math. Statist. 37, 1482–1493. · Zbl 0152.16905 · doi:10.1214/aoms/1177699140
[13] Chow, Y. S. (1973). Delayed sums and Borel summability of independent, identically distributed random variables.Bull. Inst. Math., Acad. Sin. 1, 207–220. · Zbl 0296.60014
[14] Chow, Y. S., and Lai, T. L. (1973). Limiting behavior of weighted sums independent random variables.Ann. Prob. 1, 810–824. · Zbl 0303.60025 · doi:10.1214/aop/1176996847
[15] Chow, Y. S., and Teicher, H. (1978).Probability Theory: Independence, Interchangeability, Martingales. Springer_Verlag, New York. · Zbl 0399.60001
[16] Csörgo, M., and Horváth, L. (1987). Rates of convergence in random walk summation.Bull. London Math. Soc. 19, 531–536. · Zbl 0634.60043 · doi:10.1112/blms/19.6.531
[17] Davis, J. A. (1968). Convergence rates for the law of the iterated logarithm.Ann. Math. Stat. 39, 1479–1485. · Zbl 0174.49902
[18] de Acosta, A. (1981). Inequalities of \(\mathbb{B}\) -valued random vectors with applications to the strong law of large numbers.Ann. Prob. 9, 157–161. · Zbl 0449.60002 · doi:10.1214/aop/1176994517
[19] Déniel, Y., and Derriennic, Y. (1988). Sur la convergence presque sure, au sens de Cesàro d’ordre {\(\alpha\)}, 0<{\(\alpha\)}<1, de variables aléatoires et indépendantes et identiquement distribuées.Prob. Theory Relat. Fields 79, 629–636. · Zbl 0632.60026 · doi:10.1007/BF00318787
[20] Erdös, P. (1949). On a theorem of Hsu and Robbins.Ann. Math. Stat. 20, 286–291. · Zbl 0033.29001 · doi:10.1214/aoms/1177730037
[21] Erdös, P. (1950). A remark on my paper ”On a theorem of Hsu and Robbins”.Ann. Math. Stat. 21, 138. · Zbl 0035.21403 · doi:10.1214/aoms/1177729897
[22] Gut, A. (1978). Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices.Ann. Prob. 6, 469–482. · Zbl 0383.60030 · doi:10.1214/aop/1176995531
[23] Gut, A. (1993). Complete convergence and Cesaro summation for i.i.d. random variables.Prob. Theory Rel. Fields 97, 169–178. · Zbl 0793.60034 · doi:10.1007/BF01199318
[24] Heathcote, C. R. (1967). Complete exponential convergence and some related topics.Methuen’s Review Series in Applied Probability Vol. 7, Methuen & Co., London. · Zbl 0153.47502
[25] Heinkel, B. (1990). An infinite-dimensional law of large numbers in Cesáro’s sense.J. Theor. Prob. 3, 533–546. · Zbl 0707.60011 · doi:10.1007/BF01046094
[26] Heyde, C. C., and Rohatgi, V. K. (1967). A pair of complementary theorems on convergence rates in the law of large numbers.Proc. Camb. Phil. Soc. 63, 73–82. · Zbl 0147.16905 · doi:10.1017/S0305004100040901
[27] Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables.Studia Math. 52, 159–186. · Zbl 0265.60005
[28] Hsu, P. L., and Robbins, H. (1947). Complete convergence and the law of large numbers.Proc. Nat. Acad. Sci. 33, 25–31. · Zbl 0030.20101 · doi:10.1073/pnas.33.2.25
[29] Jain, N. C. (1975). Tail probabilities for sums of independent Banach space valued random variables.Z. Wahrsch. verw. Geb. 33, 155–166. · Zbl 0304.60033 · doi:10.1007/BF00534961
[30] Katz, M. (1963). The probability in the tail of a distribution.Ann. Math. Stat. 34, 312–318. · Zbl 0209.49503 · doi:10.1214/aoms/1177704268
[31] Kurtz, T. G. (1972). Inequalities for the law of large numbers.Ann. Math. Stat. 43, 1874–1883. · Zbl 0251.60019 · doi:10.1214/aoms/1177690858
[32] Lai, T. L. (1974). Limit theorems for delayed sums.Ann. Prob. 2, 432–440. · Zbl 0305.60009 · doi:10.1214/aop/1176996658
[33] Lai, T. L. (1976). Onr-quick convergence and a conjecture of Strassen.Ann. Prob. 4, 612–627. · Zbl 0369.60036 · doi:10.1214/aop/1176996031
[34] Li, D. (1991a). Convergence rates of the law of the iterated logarithm forB-valued random variables.Science in China,34 A, 395–404. · Zbl 0735.60031
[35] Li, D. (1991b). Convergence rates of the strong law of large numbers for fields ofB-valued random variables.Chinese Ann. Math. 11(A), 744–752. · Zbl 0729.60007
[36] Li, D., Rao, M. B., Jiang, T., and Wang, X. C. (1990). Complete convergence and almost sure convergence of weighted sums of random variables. Research Report No. 90-44, Center for Multivariate Analysis, Pennsylvania State University, University Park, Pennsylvania 16802.
[37] Li, D., Rao, M. B., and Wang, X. C. (1992a). The law of the iterated logarithm for independent random variables with multidimensional indices.Ann. Prob. 20, 660–674. · Zbl 0753.60029 · doi:10.1214/aop/1176989798
[38] Li, D., Wang, X. C., and Rao, M. B. (1992b). Some results on convergence rates for probabilities of moderate deviations for sums of random variables.Internal. J. Math. and Math. Sci. 15, 481–498. · Zbl 0753.60028 · doi:10.1155/S0161171292000644
[39] Lorentz, G. G. (1955). Borel and Banach properties of methods of summation.Duke Math. J. 22, 129–141. · Zbl 0065.04501 · doi:10.1215/S0012-7094-55-02213-4
[40] Peligrad, M. (1985). Convergence rates of the strong law for stationary processes.Z. Wahrsch. verw. Geb. 70, 307–314. · Zbl 0554.60038 · doi:10.1007/BF02451434
[41] Petrov, V. V. (1975).Sums of Independent Random Variables. Springer-Verlag, New York. · Zbl 0322.60043
[42] Spitzer, F. L. (1956). A combinatiorial lemma and its applications.Trans. Amer. Math. Soc. 82, 323–339. · Zbl 0071.13003 · doi:10.1090/S0002-9947-1956-0079851-X
[43] Stout, W. F. (1974).Almost Sure Convergence. Academic Press, New York. · Zbl 0321.60022
[44] Taylor, R. L. (1978). Stochastic convergence of weighted sums of random elements in linear spaces.Lecture Notes in Math., Vol. 672. Springer-Verlag, New York. · Zbl 0443.60004
[45] Teicher, H. (1985). Almost certain convergence in double arrays.Z. Wahrsch. verw. Geb. 69, 331–345. · Zbl 0548.60028 · doi:10.1007/BF00532738
[46] Thrum, R. (1987). A remark on almost sure convergence of weighted sums.Prob. Theory Rel. Fields 75, 425–430. · Zbl 0599.60031 · doi:10.1007/BF00318709
[47] von Bahr, B., and Esseen, C. G. (1965). Inequalities for ther th absolute moment of a sum of random variables, 1.Ann. Math. Stat. 36, 299–303. · Zbl 0134.36902 · doi:10.1214/aoms/1177700291
[48] Wang, X. C., Rao, M. B., and Yang, X. Y. (1993). Convergence rates on strong laws of large numbers for arrays of rowwise independent elements.Stoch. Anal. Appl. 11, 115–132. · Zbl 0764.60037 · doi:10.1080/07362999308809305
[49] Woyczynski, W. A. (1980). Tail probabilities of sums of random vectors in Banach spaces and related mixed norms.Lecture Notes in Math. Springer-Verlag, New York,794, 455–469. · Zbl 0436.60007
[50] Wu, Z. Q., Wang, X. C., and Li, D. (1987). Some general results of the law of large numbers.Northeastern Math. J. 3, 228–238. · Zbl 0672.60012
[51] Yang, X. Y., and Wang, X. C. (1986). Tail probabilities for sums of independent and identically distributed Banach space valued random elements.Northeastern Math. J. 2, 327–338. · Zbl 0622.60012
[52] Yu, K. F. (1990). Complete convergence of weighted sums of martingale difference.J. Theoretical Prob. 3, 379–347. · Zbl 0698.60035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.